簡易檢索 / 詳目顯示

研究生: 吳昱霖
Wu, Yu-Lin
論文名稱: 3D-SLM製程Ti-6Al-4V合金微觀結構及機械性質研究
Microstructural Characteristics and Mechanical Properties of Ti-6Al-4V alloy Produced by 3D-Selective Laser Melting
指導教授: 呂傳盛
Lui, Truan-Sheng
洪飛義
Hung, Fei-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 85
中文關鍵詞: SLMTi-6Al-4V微觀組織機械性質熱處理
外文關鍵詞: SLM, Ti-6Al-4V, microstructure characteristics, mechanical properties, heat treatments
相關次數: 點閱:144下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用SLM Ti-6Al-4V,設計三系統之熱處理方式,分別為: 加熱至β相轉換溫度以上,持溫30分鐘後經由不同的冷卻方式 (水淬、空冷以及爐冷)共三組; 加熱至400˚C、600˚C以及800˚C,持溫4小時作析出熱處理後空冷共三組; 固溶熱處理後經由水淬或空冷,再經由600˚C,持溫六小時後水淬或空冷共三組。研究原材加上述九組熱處理試片之微觀結構以及機械性質,以釐清SLM Ti-6Al-4V熱處理之材料特性。實驗結果顯示,SLM Ti-6Al-4V為單一針狀麻田散體α'相,強度約為1200 MPa,延性為9 %。不同的熱處理方式後,經由各式量測建立其微觀組織與機械性質系統,其中,在400˚C和600˚C作析出熱處理可使強度上升;加熱至β相轉換溫度以上,以空冷或爐冷進行冷卻可使延性上升。若考慮製程便利性,則AS擁有最佳性質。在實驗中,觀察到加熱超過β相轉換溫度後經過水淬過程之試片無法展現其延性,其原因為針狀α'相密集析出於等軸狀結構邊界,使材料在拉伸時於彈性區間破斷,而無法展現延性。藉由本研究成果,可增加SLM Ti-6Al-4V應用平台。

    3D printing is a promising industrial process for fabricating metal products. Different from conventional process such as casting and wrought, it has advantage of net-shape manufacturing, material saving, and complicated product can be made. The purpose of this study is to investigate microstructure characteristics and mechanical properties of 3D- SLM Ti-6Al-4V. Besides, by setting three different systems of heat treatments, hope to realize phase transformations of SLM Ti-6Al-4V. SLM Ti-6Al-4V has high tensile properties, total tensile elongation to failure reached 9 % while maintaining high strength 1185 MPa.
    Three different systems of heat treatment are Beta-transus materials (BT), Precipitation materials (P) and Aging materials (A). The materials which conducted water quench process its tensile properties can’t be seen, due to α' phase aggregate at boundary left by primary β phase. SLM Ti-6Al-4V can improve its mechanical properties through different heat treatments. Elongation can be improved by BT-AC and BT-FC heat treatments while Strength can be improved by 400-AC and 600-AC heat treatments.
    Through different heat treatments, this study builds a data base of microstructure characteristics and mechanical properties of SLM Ti-6Al-4V. By different heat treatments done on SLM Ti-6Al-4V, we recognize that it does not need further heat treatments. It has high mechanical properties that can be used in most situations.

    總目錄 中文摘要 I 英文延伸摘要 II 誌謝 XII 總目錄 XIII 表目錄 XVI 圖目錄 XVII 第一章 前言 1 第二章 文獻回顧 2 2-1 鈦金屬與鈦合金 2 2-1-1 鈦金屬簡介 2 2-1-2 鈦金屬的基本性質 2 2-1-3 鈦合金以及合金元素添加之影響 3 2-1-4 鈦的介穩相 (α') 4 2-1-5 鈦合金分類 5 2-1-6 傳統Ti-6Al-4V的熱處理微觀組織 6 2-1-7 鑄造及鍛造Ti-6Al-4V製程與性質 7 2-2 3D列印技術 8 2-2-1 3D列印技術簡介及種類 8 2-2-2 選擇性雷射熔融技術 9 2-3 實驗目的 10 第三章 實驗步驟與方法 19 3-1 實驗流程概述 19 3-2 實驗材料組成與試片製備方法 19 3-3 微觀組織觀察與成份分析 20 3-3-1 金相組織分析 20 3-3-2 相分析 21 3-3-3 X光繞射光譜分析 21 3-3-4 殘留應力量測 21 3-4 機械性質分析 22 3-4-1 硬度測試 22 3-4-2 拉伸試驗 22 3-4-3 破斷面與破斷次表面分析 23 第四章 實驗結果與討論 29 4-1 選擇性雷射熔融Ti-6Al-4V顯微組織與相結構分析 29 4-1-1 微觀組織特性 30 4-1-2 X光繞射與相鑑定 32 4-1-3 BT材熱處理機制 33 4-1-4 P材熱處理機制 33 4-1-5 A材熱處理機制 34 4-1-6 殘留應力量測 34 4-2 選擇性雷射熔融Ti-6Al-4V機械性質探討 35 4-2-1 拉伸試驗與拉伸破壞韌性分析 35 4-2-2 硬度量測分析 37 4-3 選擇性雷射熔融Ti-6Al-4V拉伸破壞機制 38 4-3-1 選擇性雷射熔融Ti-6Al-4V拉伸速率與彈性模數關係 38 4-3-2 拉伸破壞機制 38 4-4 SLM Ti-6Al-4V機械性質歸納 40 4-4-1 傳統Ti-6Al-4V與SLM Ti-6Al-4V之比較 40 4-4-2 SLM Ti-6Al-4V性質提升機制 40 第五章 結論 80 參考文獻 82

    1. K. V. Wong, A.Hernandez, A Review of Additive Manufacturing, ISRN Mechanical Engineering, pp. 1-10, 2012.
    2. W. J. Kroll, How Commercial Titanium and Zizconium were born, Journal of the Franklin Institute,Vol. 260, Issues 3, pp. 169, 1955.
    3. M. Peters, J. Hemptenmacher, J. Kumpfert, C. Leyens, Titanium and Titanium Alloys, Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2003.
    4. H. K. D. H. Bhadeshia, Metallurgy of Titanium and its alloys, 2004.
    5. P. J. Bania, Beta titanium alloys and their role in the titanium industry, JOM, Vol. 46, Issues7, pp.16-19, 1994.
    6. M. J. Donachie, Jr., Titanium and Titanium Alloy, pp. 10-14, 1982.
    7. I. Weiss, S. L. Semiatin, Thermomechanical processing of beta titanium alloys - an overview, Materials Science and Engineering A, 243(1-2): pp. 46-65, 1999.
    8. G. Lütjering, Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys, Materials Science and Engineering A, 243(1-2): pp. 32-45, 1998.
    9. M. T. Jovanović, S. Tadic, S.Zec, Z. Misˇkovic´, I. Bobic, The effect of annealing temperatures and cooling rates on microstructure and mechanical properties of investment cast Ti–6Al–4V alloy, Materials & Design, 27(3): pp. 192-199, 2006.
    10. M. Niinomi, Mechanical properties of biomedical titanium alloys. Materials Science and Engineering A, 243(1-2): pp. 231-236, 1998.
    11. L. E. Murr, S. A. Quinonesb, S. M. Gaytana, M. I. Lopeza, A. Rodelaa, E. Y. Martineza, D. H. Hernandeza, E. Martineza, F. Medinac, R. B. Wickerc, Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications, J Mech Behav Biomed Mater, 2(1): pp. 20-32, 2009.
    12. T. Seshacharyulu, S. C. Medeiros, W. G. Frazier, Y. V. R. K. Prasad, Hot working of commercial Ti–6Al–4V with an equiaxed α+β microstructure: materials modeling considerations, Materials Science & Engineering A, 2000.
    13. H. Gonga, K. Rafia, H. Gua, T. Starra, B. Stucker, Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes, Additive Manufacturing, 1-4: pp. 87-98, 2014.
    14. D. Gu, Y. Shen, Balling phenomena during direct laser sintering of multi-component Cu-based metal powder, Journal of Alloys and Compounds, 432(1-2): pp. 163-166, 2007.
    15. X. Zhoua, X. Liu, D. Zhang, Z. Shena, W. Liu, Balling phenomena in selective laser melted tungsten. Journal of Materials Processing Technology, 222: pp. 33-42, 2015.
    16. K. Osakada, M. Shiomi, Flexible manufacturing of metallic products by selective laser melting of powder, International Journal of Machine Tools and Manufacture, 46(11): pp. 1188-1193, 2006.
    17. V. Hauk, Strucral and Residual Stress Analysis by Nondestructive Method. New York/USA, Elsevier Science, 1997.
    18. T. Vilaro, C. Colin, J. D. Bartout, As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting. Metallurgical and Materials Transactions A, 42(10): pp. 3190-3199, 2011.
    19. L. Thijs, F. Verhaeghe, T. Craeghs, J. V. Humbeeck, J. P. Kruth, A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Materialia, 58(9): pp. 3303-3312 , 2010.
    20. W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xiad, M. Qiana, Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition. Acta Materialia, 85: pp. 74-84 , 2015.
    21. B. Vrancken, L. Thijs, J. P. Kruth, J. V. Humbeeck, Heat treatment of Ti-6Al-4V produced by Selective Laser Melting: Microstructure and mechanical properties, Journal of Alloys and Compounds, 541: pp. 177-185, 2012.
    22. F. X. Gilmur, D. Rodriguez, J.A. Planell, Influence of tempering temperature and time on the α´-Ti-6Al-4V martensite, Journal of Alloys and Compounds, 1995.
    23. E. Sallica-Levaa, A. L. Jardinib, J. B. Fogagnoloa, Microstructure and mechanical behavior of porous Ti-6Al-4V parts obtained by selective laser melting, J Mech Behav Biomed Mater, 26: pp. 98-108, 2013.

    無法下載圖示 校內:2022-07-19公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE