| 研究生: |
洪健博 Hong, Ji-bo |
|---|---|
| 論文名稱: |
圍束應力對活性粉混凝土在高應變率下動態力學行為之分析 Analysis of dynamic behavior of confined reactive powder concrete under high strain rate |
| 指導教授: |
胡宣德
Hu, Hsuan-teh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 153 |
| 中文關鍵詞: | 霍普金森桿 、應變率 、ABAQUS 、圍束 、活性粉混凝土 |
| 外文關鍵詞: | confinement., strain rate, reactive powder concrete, ABAQUS, SHPB |
| 相關次數: | 點閱:85 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
混凝土材料是最為廣泛應用於各種民生及軍事工程上,故了解混凝土材料的力學行為將有助於結構物之分析與設計。此外,混凝土材料在不同的應變率影響及圍束效應作用下,其所表現出來的力學行為皆不相同。有鑑於此,本研究採用有限元素分析軟體ABAQUS模擬活性粉混凝土在靜態與動態荷重下分別受到單軸與多軸應力之力學行為。
在靜態分析上,考慮單軸與多軸應力下材料的力學性能,建立一套完整的數值分析模型,並驗證此數值模型的準確性,進一步作參數分析。
在動態分析上,以分離式霍普金森桿法(SHPB)模擬活性粉混凝土材料在單軸及多軸應力下之動態力學行為,並驗證數值模型的準確性,進一步分析材料的力學性能。
最後,將單軸及多軸應力對活性粉混凝土材料在靜動態下之力學性能做完整地歸納整理,以供未來相關的學術研究及工程應用上參考。
The concrete is most widely used as the fundamental building construction material, so understanding the dynamic behavior of concrete under various conditions is an issue of great importance for applications in civilian and military engineering. In addition, the concrete material under the different strain rates and confinement effects, the behavior of mechanics is obviously different. Accordingly, this study examines the static and dynamic characteristics of reactive powder concrete by means of the commercial code – ABAQUS, including the following:
In static analysis, develops a numerical model to examine the mechanics behavior under uni-axis and multi-axis stress about the reactive powder concrete.
In dynamic analysis, the split Hopkinson pressure bar (SHPB) technique is used to study the dynamic mechanics behavior of material under uni-axis and multi-axis stress.
Finally, the mechanics performance of the reactive powder concrete under the static and dynamic loading is summed up completely and the results of this study can be utilized as a reference in research and design.
1. Forquin P., Gary G., and Gatuingt F., “A testing technique concrete under confinement at high rates of strain”, International Journal of Impact Engineering, 2007.
2. Forquin P., Arias A., and Zaera R., “An experimental method of measuring the confined compression strength of geomaterials”, Internation Journal of Solids and Structures 44(2007) 4291-4317.
3. 宋佩瑄,「纖維混凝土實務」,現代營建雜誌社編印,台北,1991。
4. 鄭瑞濱,「活性粉混凝土構件之工程性質研究」,國立台灣大學土木工程研究所博士論文,2003。
5. 何雁斌,「活性粉末混凝土(RPC)的配制技術與力學性能試驗研究」,福州大學,結構工程碩士學位論文,2003。
6. Richard, P., and Cheyrezy, M., “Composition of Reactive Powder Concrete”, Cement and Concrete Research, 1955,25(7):1501-1511.
7. Dugat, J., Roux, N., and Bernier, G., “Mechanical properties of reactive powder concretes”, Materials and Structures, 1996, 29(5):233-240.
8. Bonneau, O., Lachemi, M., and Dallaire, E., “Mechanical Properties and Durability of Two Industrial Reactive Powder Concrete”, ACI Materials Journal, 1997, 94(4):286-290.
9. 陳振川,苗柏霖,姚錫齡、林進榮,詹穎雯,「超高強高性能混凝土配比及性質研究」,財團法人台灣營建研究院(1997)。
10. 李介充,「溫度製程對超高強高性能混凝土力學性質影響研究」,國立台灣大學土木工程學研究所碩士論文,台北(1998)。
11. 廖基良,「活性粉混凝土配比本土化及微觀物理性質之研究」,國立台灣大學土木工學研究所碩士論文,台北(1998)。
12. 謝孟翰,「超高強高性能混凝土之衝擊力學性質研究」,國立台灣大學土木工程學研究所碩士論文,台北(1999)。
13. 譚業成,「活性粉混凝土力學行為之研究」,國立台灣大學土木工程學研究所碩士論文,台北(2000)。
14. 朱書賢,「鋼纖維與活性粉混凝土間界面性質研究」,國立台灣大學土木工程學研究所碩士論文,台北(2000)。
15. 何曜宇,「活性粉混凝土破壞行為之研究」,國立台灣大學土木工程學研究所碩士論文,台北(2000)。
16. 盧凱偉,「超高強活性粉混凝土高壓高溫製程之研究」,國立台灣大學土木工程學研究所碩士論文,台北(2001)。
17. 鄭瑞濱,「活性粉混凝土構件之工程性質研究」,國立臺灣大學土木工程學研究所博士論文,2003。
18. 吳建興,「活性粉混凝土補強混凝土構件與耐久性能之測試研究」,朝陽科技大學營建工程系碩士論文,2003。
19. 黃金源,「活性粉混凝土潛變與乾縮行為之研究」,臺灣大學土木工程學研究所碩士論文,2004。
20. 廖文正,「活性粉混凝土薄版製程及韌性行為研究」,臺灣大學土木工程學研究所碩士論文,2004。
21. 林淑蘭,「活性粉混凝土補強混凝土構件對火害與凍融之測試研究」,朝陽科技大學營建工程系碩士論文,2005。
22. 林宜貞,「用活性粉混凝土補強的研究」,東南技術學院防災科技研究所碩士論文,2006。
23. 陳彥睿,「活性粉混凝土複合板韌性消能行為研究與應用」,臺灣大學土木工程學研究所碩士論文,2006。
24. 劉宣甫,「纖維強化活性粉混凝土板動態衝擊行為之研究」,國立成功大學土木工程學系碩士論文,2007。
25. 蔡東良,「活性粉混凝土(RPC)膠結粉體力學及凝結行為之基礎研究」,國立高雄第一科技大學營建工程所碩士論文,2007。
26. Abrams, D. A., “Effect of rate of application of load on the compressive strength of concrete.” Proc., 20th Annu. Meeting, ASTM, West Conshohocken, pp 366-374, 1917.
27. Bischoff, P. H., and Perry, S. H., “Compression behavior of concrete at high strain-rates”, Mater. Struct., vol. 24, pp 425–450, 1991.
28. Velazco, G., Visalvanich, K., and Shah, S. P., “Fracture behavior and analysis of fiber reinforced concrete beams,” Cement and concrete research, Vol. 10, pp. 41-51, 1980.
29. Suaris, W., and Shah, S. P., “Test methods for impact resistance of fiber reinforced concrete,” Research report, U. S. Army Research Office, Dec., pp. 247-263, 1981.
30. Williams, M. S., “Modeling of Local Impact Effects on Plain and Reinforced Concrete,” ACI Structural Journal, Vol. 91, No.2, Mar-Apr., pp. 178-187, 1994.
31. 周承劉,「纖維混凝土板在低速撞擊荷載下之貫穿阻抗研究」,國防大學中正理工學院軍事工程研究所碩士論文,2002。
32. 劉權誼,「混凝土在撞擊荷載之行為研究」,國防大學中正理工學院軍事工程研究所碩士論文,2003。
33. John, R., and Shah, S. P., “Constitutive Modeling of Concrete Under Impact Loading,” Impact: Effects of Fast Transient Loadings, pp. 37-65, 1988.
34. Anderson, W. F., Watson, A. J., and Armstrong, P.J., “High Velocity Projectile Impact on Fiber-Reinforced Concrete,” Ibid, pp. 368-379 (1982).
35. Ramakrishna G., and Sundararajan T., “Impact strength of a few natural fiber reinforced cement mortar slabs: a comparative study”, Cement & concrete Composites, 2005.
36. Grote, D. L., Park, S. W., and Zhou, M., “Dynamic Behavior of Concrete at High Strain Rates and Pressures: I. Experimental Characterization,” International Journal of Impact Engineering, Vol. 25, No. 3, pp. 869-886, 2001.
37. Lindholm, U. S., “Techniques in metals research,” Vol.5, Part 1, Interscience, New York, 1971.
38. Lee, J., and Fenves, G. L., “Plastic-Damage Model for Cyclic Loading of Concrete Structure”, Journal of Engineering Mechanics, vol. 124, no. 8, pp. 892-900, 1998.
39. Lubliner, J., Oliver, J., Oller, S. and Oate, E., “A plastic-damage model for concrete”, International Journal of Solids and Structure, 1989, 25:299-329.
40. Lee, J., and Fenves, G. L., “Plastic-damage model for cylic loading of concrete structure”, Journal of Engineering Mechanics, 1998, 124(8) :892-900.
41. Kolsky, H., “An investigation of the mechanical properties of materials at very high rates of loading,” Proceedings of the Physical Society, B62, pp. 676-700, 1949.
42. 戴毓修、許綜升,「分離式霍普金森桿法應用於活性粉混凝土動態力學性質之研究」,中國土木水力工程學刊 第十九卷 第三期 401-411頁,民國九十六年。
43. Zhao H., “Material behaviour characterisation using SHPB techniques, tests and simulations”, Computers and Structures 81 pp. 1301–1310 (2003).
44. Sasso, M., Newazb, G., and Amodio, D., “Material characterization at high strain rate by Hopkinson bar tests and finite element optimization”, Materials Science and Engineering A xxx (2007) xxx–xxx.
45. Bertholf, L. D., and Karnes, S. C., “Two-dimensional analysis of the split Hopkinson pressure bar system.” Mechanics of Physical and Solids, Vol. , pp. 1-19 (1975).
46. Pochhammer, L., “ die forthpflanzungsseschwindigkeiten kleiner schwingungen in einem unbegrenzten istropen kreiszylinder.” Journal of Reine Angewandte Mathematik, Vol. 11, pp. 324-226 (1876).
47. Lindholm, U. S., “Some experiments with the split Hopkinson pressure bar.” Jouranl of Mechanics of Physical and Solids, Vol. 12, pp. 317-335 (1964).
48. Davies, E. D. H., and Hunter, S. C., “The dynamic compression testing of solids by the method of the split Hopkinson pressure bar.” Journal of Mechanics of Physical and Solids, Vol. 11, pp. 155-179 (1963).
49. 陳俊瑋,「鋼管混凝土柱與斜撐構材接合處承壓行為之數值模擬」,國立成功大學土木工程學研究所碩士論文,2003。
50. Park, S. W., Xia, Q., and Zhou, M., “Dynamic behavior of concrete at high strain rates and pressure: II. Numerical simulation”, International Journal of Impact Engineering, Vol.25, pp. 887-910 (2001).
51. 徐秉業、劉信聲,「應用彈塑性力學」,清華大學出版社,1995。
52. 鐵摩辛柯、古地爾,「彈性理論」,高等教育出版社,1990。
53. L.M.卡恰諾夫.塑性理論基礎.民眾教育出版社,1983。
54. Ma, Z., and Ravi-Chandar., K., “Confined Compression: A Stable Homogeneous Deformation for Constitutive Characterization.”, Experimental Mechanics Vol.40, No.1, March 2000:38-45.
55. Domingo, S., lgnacio, C., Asce, M., Ravindra G., and Guillermo E., "Study of the Behavior of Concrete under Triaxial Compression", Journal of Engineering Mechanics/FEB 2002:156-163.