| 研究生: |
曾世凱 Tzeng, Shi-Kai |
|---|---|
| 論文名稱: |
氧化鋅一維結構成長、元件組裝及紫外光偵測器製作之研究 Growth, Assembly, Ultraviolet Photodetector Fabrication of One-dimensional ZnO |
| 指導教授: |
洪敏雄
Hon, Min-Hsiung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 水熱法 、水溶液法 、氧化鋅 、紫外光檢測器 、表面改質 、奈米結構 |
| 外文關鍵詞: | hydrothermal, aqueous-solution process, zinc oxide, ultraviolet photodetector, surface modification, nanostructure |
| 相關次數: | 點閱:94 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要目標是以低溫的溼式化學法製程,製作出高效能的紫外光偵測器。從材料合成、組裝與元件的製作及測量,製程的最高溫度小於200oC。採用的方法是先利用水熱法合成單晶的氧化鋅奈米線,並藉由調控界面活性劑以改變氧化鋅奈米結構的尺寸。之後利用介電泳動的製程將單晶氧化鋅奈米線在電場的輔助下組裝成紫外光偵測器。接著,表面改質氧化鋅奈米線以提高光偵測器對光的靈敏度與響應時間。最後為了簡化製程與縮短時間,直接將成長氧化鋅的晶種以電化學沉積於電極上,隨後於溶液中成長氧化鋅時,使之自組裝成光偵測器。
為搭配後端的光偵測器應用,氧化鋅奈米線的尺寸需要在合成的過程中獲得良好的控制,在此使用聚乙烯醇作為奈米線成長的導向劑,並藉由調控聚乙烯醇的添加量以達到控制奈米線的目的。在室溫時,聚乙烯醇的氫氧基能與溶液中二價鋅離子配位,在反應溫度為150 oC的鹼性溶液中,聚乙烯醇的氫氧基斷鍵導致鋅離子能在反應過程中持續的被釋放。此過程中聚乙烯醇相當於儲存鋅離子的裝置,在反應前因為鋅離子的含量較少所以有較少的成核點,隨著延長持溫時間,鋅離子能緩慢的被釋放以提供氧化鋅成長所使用。當聚乙烯醇的添加量由0增加至0.92 wt%時,氧化鋅奈米線的平均長度由1.3 m增加至126 m。在本研究中藉由介電泳動排列氧化鋅奈米線並跨接於電極之間,用以製作成光導體式的紫外光偵測器,並藉著聚甲基丙烯酸甲酯作為鈍化層被覆於氧化鋅表面,進而達到降低暗電流的效果。同時,為了增加光偵測器對光的靈敏度,藉由溶劑輔助式壓印製程在光偵測器上製作具微透鏡陣列的結構的聚甲基丙烯酸甲酯,用以增加入射光的穿透度與降低反射率,進而加強了光偵測器的訊雜比。為降低響應時間,在本研究中將銀奈米顆粒光還原沉積於氧化鋅表面,並發現銀/氧化鋅的界面存在著非劑量比的氧化銀,推測這非計量比的氧化銀導致銀奈米顆粒與氧化鋅表面產生蕭基式接觸,為改善元件性能的重要關鍵。接著,直接利用濕式化學法合成氧化銀奈米顆粒,並使之附著於氧化鋅表面,更降低光偵測器的響應時間,氧化銀奈米顆粒作為p型半導體將附著於n型的氧化鋅上,使其間產生p-n接面。在光偵測器未照光時,此p-n接面可增加氧化鋅表面之空乏層厚度,降低暗電流。偵測器在照射與關閉光的情況下,可藉內建電場的輔助同時增加光靈敏度與加速光響應速度。將氧化鋅表面沉積氧化銀後可獲得大於105的訊雜比,響應時間小於1 sec的高效能紫外光偵測器。
為了簡化製作光偵測器的製程與縮短元件製作時間,利用電鍍鋅於電極上作為晶種,再藉由水溶液法合成氧化鋅,在電極間相向成長的氧化鋅奈米線晶體會同時自組裝成光偵測器的結構。經由光致發光光譜儀與X光電子能譜儀分析得知,水溶液法合成的氧化鋅表面佔約44.6%的 導致其響應時間極長,達7×104 sec以上。為改善此複雜的奈米結構的表面特性,則利用在純水中進行水熱反應的方式將表面鈍化,並有效的降低響應時間致220 sec。
Fabrication of high-performance ZnO nanowire-based photodetectors through low temperature processes is the main purpose of this dissertation. For this purpose, a wet chemical process was employed as the main technique for synthesizing ZnO nanowires. Besides, the morphology and size of ZnO nanowires were tuned by the addition of PVA with varied amount. PVA acts as a structure-directing agent for growing the ultra-long ZnO nanowires. Then, the ZnO UV photdetectors were fabricated by aligning ZnO nanowires between the interdigitated electrodes via a dielectrophoresis process. Based on decreasing the reflection of UV light on ZnO surface, the signal to noise ratio can be improved via capping PMMA micro-lens arrays. Then Ag nanoparticles were loaded onto the surface of ZnO nanowires by a photoreduction process, for the purpose of decreasing the response time. By investigating the Ag/ZnO interface, a non-stoichiometric AgOx phase is observed by HRTEM images and SAED patterns. Ag2O nanoparticles were also decorated onto the surface of ZnO nanowires. Photogenerated electrons and holes can be separated by the built-in potential induced by Ag2O/ZnO p-n junction. After decorating Ag2O nanoparticles onto ZnO surface, the maximum signal to noise ratio is larger than 105, accomplishing both a short rise time and a decay time of less than 1 s. After turning off UV irradiation, the current of Ag2O/ZnO heterostructured UV detector is recovered to the initial value within around 10~13s.
The aqueous solution processes were also used to self-assemble ZnO nanobridge photodetcors. By investigation with XPS and PL, singly ionized oxygen vacancies induce the persistence photoconductivity of ZnO-nanowire-based UV photdetectors. A hydrothermal process was used to passivate the surface states and singly ionized oxygen vacancies on the ZnO nanowires. The photoresponse time decreases significantly after extending the hydrothermal duration.
[1] S. M. Sze, “Semiconductor devices: Physics and technology” John Wiley & Sons, New York, (1985).
[2] E. Monroy, F. Omnés, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors”, Semicond. Sci. Tech., 18 (2003) R33.
[3] I. Cantarell and I. Almodovar, “Prediction, acceleration and correction of fatique effects in photomultiplier tubes” Int. J. Appl. Radiat. Isotopes, 16 (1965) 91-95.
[4] A. R. Franklin, W. W. Holloway, and D. H. Mcmahon,” Photomultiplier tube cooling device” Rev. Sci. Instrum. 36 (1965) 232.
[5] G. Chodil, D. Hearn, and R. C. Jopson, “Background events in photomultiplier tubes at high altitudes” Rev. Sci. Instrum. 36 (1965) 394-395.
[6] R. Krode and J. Geist, “Quantum efficiency stability of silicon photodiode” Appl. Opt. 26 (1987) 5284-5290.
[7] L. R. Canfield, J. Kerner, and R. Krode, ”Stability and quantum efficiency performance of silicon photodiode detectors in the far ultravioler” Appl. Opt. 28, (1989) 3940-3943.
[8] H. Morkoç, S. Stritea, G. B. Gao, M.E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies” J. Appl. Phys. 76 (1994) 1363-1398.
[9] J. J. T. Torvik, J. I. Pankove, and B. J. Van Zeghbroeck, “Comparison of GaN and 6H-SiC p-i-n photodetectors” IEEE Trans. Electron. Dev. 46 (1999) 1326-1331.
[10] T. Muranaka, Y. Kikuchi, T. Yoshizawa, N. Shirakawa, and J. Akimitsu, “Superconductivity in carrier-doped silicon carbide” Sci. Technol. Adv. Mater. 9 (2008) 044204.
[11] D. Walker, X. Zhang, P. Kung, A. Saxler, S. Javadpour, J. Xu, and M. Razeghi, “AlGaN ultraviolet photoconductors grown on sapphire” Appl. Phys. Lett. 68 (1996) 2100-2102.
[12] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, ”Small-signal frequency response of long-wavelength vertical-cavity lasers” IEEE Photonics Tech. Lett. 13 (2001) 1041-1135.
[13] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz, and M. Razeghi, “High-speed, low-noise metal-semiconductor-metal ultraviolet photodetectors based on GaN” Appl. Phys. Lett. 74 (1999) 762-764.
[14] P. D. Dapkus, “Metalorganic chemical vapor deposition” Annu. Rev. Mater. Sci. 12 (1982) 243-269.
[15] D. Walker, A. Saxler, P. Kung, X. Zhang, M. Hamilton, J. Diaz, and M. Razeghi, “Visible blind GaN p-i-n photodiodes” Appl. Phys. Lett. 72 (1998) 3303-3305.
[16] B. Butun, T. Tut, E. Ulker, T. Yelboga, and E. Ozbay, “High-performance visible-blind GaN-based p-i-n photodetectors“, Appl. Phys. Lett., 92 (2008) 033507.
[17] D. Jiang, J. Zhang, Y. Lu, K. Liu, D. Zhao, Z. Zhang, D. Shen, and X. Fan, “Ultraviolet Schottky detector based on epitaxial ZnO thin film“, Solid State Electron. 52 (2008) 679-682.
[18] K. W. Liu, J. G. Ma, J. Y. Zhang, Y. M. Lu, D. Y. Jiang, B. H. Li, D. X. Zhao, Z. Z. Zhang, B. Yao, and D. Z. Shen, “Ultraviolet photoconductive detector with high visible rejection and fast photoresponse based on ZnO thin film” Solid State Electron. 51 (2007) 757-761.
[19] Y. Li, A. Paulsen, I. Yamada, Y. Koide, and J. J. Delaunay, “Bascule nanobridges self-assembled with ZnO nanowires as double Schottky barrier UV swiches” Nanotech. 21 (2010) 295502.
[20] S. Liang, H. Sheng, Y. Liu, Z. huo, Y. Lu, and H. Shen, “ZnO Schottky ultraviolet photodetectors” J. Cryst. Growth, 225 (2001) 110-113.
[21] M. H. huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, Adv. Mater. 13 (2001) 113-116.
[22] D. A. Neamen, “Semiconductor physics and devices: basic principles”, McGraq-Hill (2003).
[23] M. Andrés Vergés, A. Mifsud, and C. J. Serna, “Formation of rod-like zinc oxide microcrystals in homogeneous Solutions”, J. Chem. Soc. Faraday Trans. 86 (1990) 959-963.
[24] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices”, J. Appl. Phys. 98 (2005) 041301.
[25] J. A. Sans, A. Segura, F. J. Manjón, B. Marí, A. Munõz, and M. J. Herrera-Cabrera, “Optical properties of wurtzite and rock-salt ZnO under pressure” Microelectron. J. 36 (2005) 928-932.
[26] A. Ashrafi and C. Jagadish, “Review of zincblende ZnO: Stability of metastable ZnO phases”, J. Appl. Phys. 102 (2007) 071101.
[27] V. L. Solozhenko, O. O. Kurakevych, P. S. Sokolov, and A. N. Baranov, “Kinetics of the wurtzite-to-rock-salt phase transformation in ZnO at high pressure” J. Phys. Chem. A, 115 (2011) 4354-4358.
[28] A. B. M. A. Ashrafi, A. Ueta, A. Avramescu, H. Kumano, I. Suemune, Y. W. Ok and T. Y. Seong, “Growth and characterization of hypothetical zinc-blende ZnO films on GaAs.001. substrates with ZnS buffer layers”, Appl. Phys. Lett. 76 (2000) 550-552.
[29] R. A. Laudise, A. A. Ballman, “Hydrothermal synthesis of zinc oxide and zinc sulfide”, J. Phys. Chem. 64 (1960) 688-691.
[30] L. S. Mende and J. L. M. Driscoll, “ZnO-nanostructures, defects, and devices”, Mater. Today, 10 (2007) 40-48.
[31] J. Han, P. Q. Mantas, and A. M. R. Senos, “Defect chemistry and electrical characteristics of undoper and Mn-doped ZnO” J. Eur. Cerm. Soc. 22 (2002) 49.
[32] F. Oba, S. R. Nishitani, S. Isotani, H. Adachi, and I. Tanaka, “Energetics of native defects in ZnO”, J. Appl. Phys. 90 (2001) 824-828.
[33] Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelt of semiconducting oxide” Science, 291 (2001) 1947-1949.
[34] D. D. Lin, W. Pan, and H. Wu, “Morphological control of centimeter long aluminum-doped zinc oxide nanofibers prepared by electrospinning”, J. Am. Ceram. Soc. 90 (2007) 71-76.
[35] W. I. Park, D. H. Kim, S. W. Jung, G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods”, Appl. Phys. Lett. 80 (2002) 4232-4234.
[36] W. T. Chiou, W. Y. Wu, and J. M. Ting, “Growth of single crystal ZnO nanowires using sputter deposition” Diam. Relat. Mater. 12 (2003) 1841-1844.
[37] H. Zhang, D. R. Yang, X. Y. Ma, N. Du, J. B. Wu, and D. L. Que, “Straight and Thin ZnO Nanorods: Hectogram-Scale Synthesis at Low Temperature and Cathodoluminescence” J. Phys. Chem. B, 110 (2006) 827-830.
[38] S. Xu, N. Adiga, S. Ba, T. Dasgupta, C. F. J. Wu, and Z. L. Wang, “Optimizing and Improving the Growth Quality of ZnO Nanowire Arrays Guided by Statistical Design of Experiments”, ACS Nano, 3 (2009) 1803-1812.
[39] L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solution”, Adv. Mater. 15 (2003) 464-466.
[40] S. Xu, Y. Shen, Y. Ding, and Z. L. Wang, “Growth and transfer of monolithic horizontal ZnO nanowire superstructures onto flexible substrates”, Adv. Func. Mater. 20 (2010) 1493-1495.
[41] E. M. Freer, O. Grachev, X. Duan, S. Martin, D. P. Stumbo, “High-yield self-limiting single-nanowire assembly with dielectrophoresis”, Nat. Nanotech., 5 (2010) 525-530.
[42] X. Duan, C. Niu, V. Sahi, J. Chen, J. Chen, J. W. Parce, S. Empedocles, and J. L. Goldman, “High-performance thin-film transistors using semiconductor nanowires and nanoribbons”, Nat. 425 (2003) 274-278.
[43] Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razvi, and A. Javey, “Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing” Nano Lett. 8 (2008) 20-25.
[44] F. Kim, S. Kwan, J. Akana, and P. Yang, “Langmuir-Blodgett nanorod assembly”, J. Am. Chem. Soc. 123 (2001) 4360-4361.
[45] K. Haraguchi, K. Hiruma, T. Katsuyama, K. Tominaga, M. Shirai, and T. Shimada, “Selforganized fabrication of planar GaAs nanowhisker arrays” Appl. Phys. Lett. 69 (1996) 386-388.
[46] M. S. Islam, S. Sharma, T. I. Kamins, and R. S. Williams, “Ultrahigh-density silicon nanobridges formed between two vertical silicon surfaces” Nanotech. 15 (2004) L5-L8.
[47] R. S. Chen, S. W. Wang, Z. H. Lan, J. T. H. Tsai, C. T. Wu, L. C. Chen, K. H. Chen, Y. S. Huang, and C. C. Chen, “On-chip fabrication of well-aligned and contact-barrier-free GaN nanobridge devices with ultrahigh photocurrent responsivity” Small, 4 (2008) 925-929.
[48] J. F. Conley, L. Stecker, and Y. Ono, “Directed integration of ZnO nanobridge devices on a Si substrate” Appl. Phys. Lett. 87 (2005) 223114.
[49] S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z. L. Wang, ”Self-powered nanowire devices” Nat. Nanotech. 5 (2010) 366-373.
[50] Y. Li, F. D. Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires” Nanotech. 20 (2009) 045501.
[51] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain” Nano Lett. 7 (2007) 1003-1009.
[52] L. Liao, H. B. Lu, J. C. Li, D. F. Wang, D. J. Fu, and C. Liu, “Size Dependence of Gas Sensitivity of ZnO Nanorods” J. Phys. Chem. C, 111 (2007) 1900-1903.
[53] A. Z. Sadek, S. Choopun, W. Wlodaeski, S. J. Ippolito, and K. Kalantar-zadeh, “Characterization of ZnO nanobelt-based gas sensor for H2, NO2, and hydrocarbon sensing” IEEE Sens. J. 7 (2007) 919-924.
[54] J. D. Prades, F. H. Ramirez, R. J. Diaz, M. Manzanares, T. Andreu, A. Cirera, A. R. Rodriguez, and J. R. Morante, “The effects of electron–hole separation on the photoconductivity of individual metal oxide nanowires”, Nanotech. 19 (2008) 465501.
[55] S. R. Morrison, “The Chemical Physics of Surfaces 2nd Edition” Plenum Press. New York and London, (1990).
[56] M. Batzill and U. Diebold, “The surface and materials science of tin oxide”, Prog. Surf. Sci. 79 (2005) 47-154.
[57] H. Chon and J. Pajares, “Hall effect studies of oxygen chemisorption on zinc oxide”, J. Catal. 14 (1969) 257-260.
[58] A. B. Djuršić and Y. H. Leung, “Optical Properties of ZnO Nanostructures”, Small, 2 (2006) 944-961.
[59] M. Liu and H. K. Kim, “Ultraviolet detection with ultrathin ZnO epitaxial films treated with oxygen plasma “, Appl. Phys. Lett. 84 (2004) 173-175.
[60] S. Lany and A. Zunger, “Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors”, Phys. Rev. B, 72 (2005) 035215.
[61] T. Kawano, J. Yahiro, H. Maki, and H. Imai, “Epitaxial growth of wurtzite ZnO crystals in an aqueous solution system”, Chem. Lett. 35 (2006) 442-443.
[62] X. Wu, H. Bai, C. Li, G. Lu, and G. Shi, “Controlled one-step fabrication of highly oriented ZnO nanoneedle/nanorods arrays at near room temperature”, Chem. Comm., 42 (2006) 1655-1657.
[63] 袁詩璞,”第五講-電鍍液的組成及其作用(一)”,電鍍與塗飾,第27期 (2008) 41-44.
[64] A. Gomes, and M. I. Silva Pereira, “Pulsed electrodeposition of Zn in the presence of surfactants” Electrochim Acta, 51 (2006) 1342-1350.
[65] J. Y. Lee, J. W. Kim, M. K. Lee, H. J. Shin, H. T. Kim, and S. M. Park, “Effects of organic additives on initial stages of zinc electroplating on iron”, J. Electrochem. Soc. 151 (2004) C25-C31.
[66] M. C. Li, L. L. Jiang, W. Q. Zhang, Y. H. Qian, S. Z. Luo, and J. N. Shen, “Electrodeposition of nanocrystalline zinc from acidic sulfate solutions containing thiourea and benzalacetone as additives” J. Solid State Electrochem, 11 (2007) 549-553.
[67] K. M. S. Youssef, C. C. Koch, and P. S. Fedkiw, “Influence of Additives and Pulse Electrodeposition Parameters on Production of Nanocrystalline Zinc from Zinc Chloride Electrolytes” J. Electrochem. Soc., 151 (2004) C103-C111.
[68] K. L. Lai, M. H. Hon, and I. C. Leu, “Pattern formation on polymer resist by solvent-assisted nanoimprinting with PDMS mold as a solvent transport medium” J. Micromech. Microeng. 21 (2011) 075013.
[69] K. L. Lai, M. H. Hon, and I. C. Leu, “Soft imprint lithography using swelling/deswelling characteristics of a polymer mold and a resist induced by a poor solvent” J. Micromech. Microeng. 19 (2009) 037001.
[70] A. Kawska, P. Duchstein, O. Hochrein, and D. Zahn, ”Atomistic mechanisms of ZnO aggregation from ethanolic solution: ion association, proton transfer, and self-organization“ Nano Lett. 8 (2008) 2336-2340.
[71] W. Sang, Y. Fang, J. Fan, Y. He, J. Min, Y. Qian, “Novel synthesis method of ZnO nanorods by ion complex transformed PVA-assisted nucleation” J. Cryst. Growth, 299 (2007) 272-276.
[72] C. Xu, A. S. Teja, “Continuous hydrothermal synthesis of iron oxide and PVA-protected iron oxide nanoparticles” J. Supercrit. Fluid, 44 (2008) 85-91.
[73] O. Harnack, C. Pacholski, H. Weller, A. Yasuda, and J. M. wessels, “Rectifying behavior of electrically aligned ZnO nanorods” Nano. Lett. 3 (2003) 1097-1101.
[74] Q. H. Li, T. Gao, Y. G. Wang, and T. H. Wang, “Adsorption and desorption of oxygen probed from ZnO nanowires films by photocurrent measurements” Appl. Phys. Lett. 86 (2005) 123117.
[75] K. Liu, M. Sakurai, M. Liao, and M. Aono, “Giant improvement of the performance of ZnO nanowire photodeteectrors by Au nanoparticles” J. Phys. Chem. C, 114 (2010) 19835-19839.
[76] C. S. Lao, M. C. Park, Q. Kuang, Y. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, “Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization” J. Am. Chem. Soc. 129 (2007) 12096-12097.
[77] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders” J. Appl. Phys. 79 (1996) 7983-7990.
[78] A. B. Djuršić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. G. Rao, W. K. Chan and H. F. Lui, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures” Adv. Funct. Mater. 14 (2004) 856-864.
[79] D. Sun and H. J. Sue, “Tunable ultraviolet emission of ZnO quantum dots in transparent poly(methul methacrylate)” 94 (2009) 253106.
[80] D. Haranath, S. Sahai, A.G. Joshi, B. K. Gupta, and V. Shanker, “Investigation of confinement effects in ZnO quantum dots” 42 (2009) 425701.
[81] Q. H. Chen, S. Y. Shi, and W. G. Zhang, “Study on luminescence chearacteristic of the ZnO/polymer hybrid films” Colloid Polym. Sci. 287 (2009) 533-540.
[82] X. W. Du, Y. S. Fu, J. Sun, X. Han, and J. Liu, „Complete UV emission of ZnO nanoparticles in a PMMA matrix” Semicond. Sci. Technol. 21 (2006) 1202-1206.
[83] N. Serpone, D. Lawless, and R. Khairutdinov, “size effects on the photophysical properties of colloidal anatase TiO2 particles; size quantization or direct transitions in this indirect semiconductor?” J. Phys. Chem. 99 (1995) 16646-16654.
[84] S. K. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials” Opt. Mater. 29 (2007) 1481-1490.
[85] Y. P. Huang, H.P. David Shieh, and S. T. Wu, “Applications of Multidirectional Asymmetrical Microlens-Array Light-Control Films on Reflective Liquid-Crystal Displays for Image Quality Enhancement” Appl. Optics, 43 (2004) 3656-3663.
[86] M. dean, A. Mckee, and M. Bowker, “Oxygen adsorption on a supported Ag catalyst and modification by surface promoters” Sur. Sci. 211 (1989) 1061-1067.
[87] M. J. Height, S. E. Pratsinis, O. Mekasuwandumrong, and Praserthdam, “Ag-ZnO catalysrs for UV-photodegradation of methylene blue” Appl. Catal. B, 63 (2006) 305-312.
[88] O. Ichiose, M. kawaguchi, and N, Furuya, “Effect of silver catalyst on the activity and mechanism of a gas diffusion type oxygen cathode for chlor-alkali electrolysis” J. Appl. Elctrochem. 34 (2004) 55-59.
[89] O. Akhavan, “Photocatalytic reduction of grapheme oxides hybridized by ZnO nanoparticles in ethanol” Carbon, 49 (2011) 49 11-18.
[90] J. J. Wu, C. H. Tseng, “Photocatalytic properties of nc-Au/ZnO nanorod composites“ Appl. Catal. B-Environ. 66 (2006) 51-57.
[91] M. W. Allen, M. M. Alkaisi, S. M. Durbin, “Metal schottky diodes on Zn-polar and O-polar bulk ZnO“ Appl. Phys. Lett. 89 (2006) 103520.
[92] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, H. Shen, ”ZnO Schottky ultraviolet photodetectors” J. Crys. Growth, 225 (2001) 110-113.
[93] H. Sheng, S. Muthukumar, N. W. Emanetoglu, Y. Lu, ”Schottky diode with Ag on (1120) epitaxial ZnO film” Appl. Phys. Lett.80 (2002) 2132-2134.
[94] H. Kim, H. Kim, D. W. Kim,“ Silver Schottky contacts to a-plane bulk ZnO“ J. Appl. Phys. 108 (2010) 074514.
[95] M. W. Allen, S. M. Durbin, “Silver oxide schottky contacts on n-type ZnO“ Appl. Phys. Lett. 91 (2007) 053512.
[96] S. Matsusima, Y. Teraoka, N. Miura, and N. Yamazoe, “Electron interaction between metal additives and tin dioxide-based gas sensors” Jpn. J. Appl. Phys. 27 (1988) 1798-1802.
[97] H. A. Atwater, A. Polman, “ Plasmonics for improved photovoltaic devices” Nat. Mater. 9 (2010) 205-213.
[98] M. J. Kim, S. Kim, H. Park, and Y. D. Huh, “Morphological evolution fo Ag2O microstructures from cubes to octapods and their antibacterial activities“ Bull. Korean Chem. Soc. 32 (20110 3793-3795.
[99] W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, and j. Cui, “Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photcatalytic activity“ ACS Appl. Mater. Inter. 2 (2010) 2385-2392.
[100] U. K. Barik, S. Srinivasan, C. L. Nagendra, A. Subrahmanyam, “Electrical andoptical properties of reactive DC magnetron sputtered silver oxide thin films: role of oxygen” Thin Solid Films, 429 (2003) 129-134.
[101] 袁詩璞,”第十講-鍍層的針孔、麻點與孔隙率”,電鍍與塗飾,第28期 (2008) 46-50.
[102] T. Pauporté, G. Bataille, L. Joulaud, and F. J. Vermersch, “Well-aligned ZnO nanowire arrays prepared by seed-layer-free electrodeposition and their Cassie-Wenzel transition after hydrophobization” J. Phys. Chem. C, 114 (2010) 194-202.
[103] J. Liu, J. She, S. Deng, J. Chen, and N. Xu, “Ultathin seed-layer for tuning of ZnO nanowires arrays and their field emission characteristics” J. Phys. Chem. C 112 (2008) 11685-11690.
[104] A. Bera and D. Basak, “Role of defects in the anomalous photoconductivity in ZnO nanowires” Appl. Phys. Lett. 94 (2009) 465501.
[105] N. Liu, G. Fang, W. Zeng, H. Zhou, F. Cheng, Q. Zheng, L. Yuan, X. Zou, and X. Zao, “Direct Growth of Lateral ZnO Nanorod UV Photodetectors with Schottky Contact by a Single-Step Hydrothermal Reaction” ACS Appl. Mater Inter. 2 (2010) 1973-1979.
[106] A. V. Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The Kinetics of the Radiative and Nonradiative Processes in Nanocrystalline ZnO Particles upon Photoexcitation” J. Phys. Chem. B, 104 (2000) 1715-1723.
[107] J. F. Moulder, Handbook of X-ray photoelectron spectroscopy, Eden Prairie 1995.
[108] O. Lupan, L. Chow, L. K. Ono, B. R. Cuenya, G. Chai, H. Khallaf, S. Park, A. Schulte, Synthesis and characterization of Ag- or Sb- doped ZnO nanorods by a facile hydrothermal route, J. Phys. Chem. C, 114, 12401-12408, 2010.
[109] Z. G. Wang, X. T. Zu, S. Z. Yang, L. M. Wang, “Blue luminescence from carbon modified ZnO nanoparticles” J. Mater. Sci. 41, 3729–3733, 2006.
[110] B. Meyer, D. Marx, O. Dulub, U. Diebold, M. Kunat, D. Langenberg and C. Wöll, “Partial dissociation of water leads to stable superstructures on the surface of zinc oxide” Angew. Chem. Int. Ed. 43 (2004) 6641-6645.
[111] M. A. Henderson, “The interaction of water with solid surfaces: fundamental aspects revisited” Surf. Sci. Rep. 46 (2002) 1-308.
校內:2017-07-23公開