簡易檢索 / 詳目顯示

研究生: 梁永沛
Liang, Yong-Pei
論文名稱: 鋅介導的抗發炎機制在達卡產氣單胞菌感染中的角色:透過Nrf2信號途徑調控NLRP3發炎小體的活化
Zinc-mediated anti-inflammatory effect regulating NLRP3 inflammasome activation through Nrf2 signaling pathway in Aeromonas dhakensis infection
指導教授: 陳柏齡
Chen, Po-Lin
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 59
中文關鍵詞: 達卡產氣單胞菌壞死性筋膜炎NLRP3 發炎小體Nrf2
外文關鍵詞: Aeromonas dhakensis, zinc, necrotizing fasciitis, NLRP3 inflammasome, Nrf2
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 I Abstract II Acknowledgment III List of Table VI List of Figures VII Introduction 8 1. Aeromonas dhakensis 8 2. Necrotizing fasciitis 8 3. NF-κB/NLRP3 signaling pathway 9 4. Nrf2 signaling pathway 11 5. Zinc 12 6. The inhibition of inflammatory response by zinc 13 7. The role of zinc in modulating dysregulated inflammatory response in severe Aeromonas soft tissue infection 14 Materials and methods 15 A. Materials 15 1. Antibodies 15 2. Medium and reagents 15 B. Methods 16 1. Bacterial strains and culture 16 2. Cell line culture and differentiation 16 3. Growth curve 16 4. Cytotoxicity assay 16 5. Western blotting 17 6. RNA sequencing 17 7. ROS detection 18 8. RNA isolation and Real-Time PCR 18 9. Nuclear/Cytosol fractionation 19 10. Immunofluorescence 19 11. Mice 20 12. Mice survival and necrotizing fasciitis infection treated with combined therapy 20 13. Mice necrotizing fasciitis infection treated with separated therapy 20 14. Statistical analysis 21 Results 22 1. The cells and the bacteria retained growth while treated with zinc sulfate. 22 2. Zinc inhibited the activation of NLRP3 inflammasome in A. dhakensis infection. 22 3. Zinc inhibits the activation of NLRP3 inflammasome through regulating Nrf2 signaling pathway and NF-κB signaling pathway during A. dhakensis infection. 23 4. Zinc treatment reduced the production of ROS and promoted the activation of Nrf2 signaling pathway. 24 5. NF-κB activation was diminished in A. dhakensis-infected macrophages in the presence with zinc. 25 6. The therapy of cefepime combined with zinc did not rescue the survival and the necrosis tissue damage induced by A. dhakensis in mice. 25 7. Separated treatment of cefepime and zinc had no significant anti-inflammatory effect in A. dhakensis-induced necrotizing fasciitis mouse model. 26 Conclusion 28 Discussion 29 References 32 Tables 38 Figures 39

    1. Beaz-Hidalgo, R. and M.J. Figueras, Aeromonas spp. whole genomes and virulence factors implicated in fish disease. J Fish Dis, 2013. 36(4): p. 371-88.
    2. Dallaire-Dufresne, S., et al., Virulence, genomic features, and plasticity of Aeromonas salmonicida subsp. salmonicida, the causative agent of fish furunculosis. Vet Microbiol, 2014. 169(1-2): p. 1-7.
    3. Fernández-Bravo, A. and M.J. Figueras, An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity. Microorganisms, 2020. 8(1).
    4. Wu, C.J., et al., Clinical implications of species identification in monomicrobial Aeromonas bacteremia. PLoS One, 2015. 10(2): p. e0117821.
    5. Huys, G., et al., Aeromonas hydrophila subsp. dhakensis subsp. nov., isolated from children with diarrhoea in Bangladesh, and extended description of Aeromonas hydrophila subsp. hydrophila (Chester 1901) Stanier 1943 (approved lists 1980). Int J Syst Evol Microbiol, 2002. 52(Pt 3): p. 705-712.
    6. Figueras, M.J., et al., Clinical relevance of the recently described species Aeromonas aquariorum. J Clin Microbiol, 2009. 47(11): p. 3742-6.
    7. Martínez-Murcia, A., et al., Phylogenetic evidence suggests that strains of Aeromonas hydrophila subsp. dhakensis belong to the species Aeromonas aquariorum sp. nov. Curr Microbiol, 2009. 58(1): p. 76-80.
    8. Wu, C.J., et al., Aeromonas aquariorum septicemia and enterocolitis in a cirrhotic patient. Diagn Microbiol Infect Dis, 2012. 74(4): p. 406-8.
    9. Chen, P.L., et al., A comparative study of clinical Aeromonas dhakensis and Aeromonas hydrophila isolates in southern Taiwan: A. dhakensis is more predominant and virulent. Clinical Microbiology and Infection, 2014. 20(7): p. O428-O434.
    10. Puthucheary, S.D., S.M. Puah, and K.H. Chua, Molecular characterization of clinical isolates of Aeromonas species from Malaysia. PLoS One, 2012. 7(2): p. e30205.
    11. Aravena-Román, M., et al., Aeromonas aquariorum is widely distributed in clinical and environmental specimens and can be misidentified as Aeromonas hydrophila. J Clin Microbiol, 2011. 49(8): p. 3006-8.
    12. Chen, P.L., et al., Matrix-assisted laser desorption ionization-time of flight mass spectrometry can accurately differentiate Aeromonas dhakensis from A. hydrophila, A. caviae, and A. veronii. J Clin Microbiol, 2014. 52(7): p. 2625-8.
    13. Wu, C.J., et al., Distribution and phenotypic and genotypic detection of a metallo-β-lactamase, CphA, among bacteraemic Aeromonas isolates. J Med Microbiol, 2012. 61(Pt 5): p. 712-719.
    14. Wu, C.J., et al., AQU-1, a chromosomal class C β-lactamase, among clinical Aeromonas dhakensis isolates: distribution and clinical significance. Int J Antimicrob Agents, 2013. 42(5): p. 456-61.
    15. Chen, P.L., B. Lamy, and W.C. Ko, Aeromonas dhakensis, an Increasingly Recognized Human Pathogen. Front Microbiol, 2016. 7: p. 793.
    16. Hakkarainen, T.W., et al., Necrotizing soft tissue infections: review and current concepts in treatment, systems of care, and outcomes. Curr Probl Surg, 2014. 51(8): p. 344-62.
    17. Giuliano, A., et al., Bacteriology of necrotizing fasciitis. Am J Surg, 1977. 134(1): p. 52-7.
    18. Misiakos, E.P., et al., Current concepts in the management of necrotizing fasciitis. Front Surg, 2014. 1: p. 36.
    19. Morgan, M.S., Diagnosis and management of necrotising fasciitis: a multiparametric approach. J Hosp Infect, 2010. 75(4): p. 249-57.
    20. Martinon, F., K. Burns, and J. Tschopp, The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell, 2002. 10(2): p. 417-26.
    21. Zheng, D., T. Liwinski, and E. Elinav, Inflammasome activation and regulation: toward a better understanding of complex mechanisms. Cell Discovery, 2020. 6(1): p. 36.
    22. Blevins, H.M., et al., The NLRP3 Inflammasome Pathway: A Review of Mechanisms and Inhibitors for the Treatment of Inflammatory Diseases. Frontiers in Aging Neuroscience, 2022. 14.
    23. Swanson, K.V., M. Deng, and J.P.Y. Ting, The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nature Reviews Immunology, 2019. 19(8): p. 477-489.
    24. Yang, Y., et al., Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death & Disease, 2019. 10(2): p. 128.
    25. Canning, P., F.J. Sorrell, and A.N. Bullock, Structural basis of Keap1 interactions with Nrf2. Free Radical Biology and Medicine, 2015. 88: p. 101-107.
    26. Krajka-Kuźniak, V., J. Paluszczak, and W. Baer-Dubowska, The Nrf2-ARE signaling pathway: An update on its regulation and possible role in cancer prevention and treatment. Pharmacol Rep, 2017. 69(3): p. 393-402.
    27. Namani, A., et al., Modulation of NRF2 signaling pathway by nuclear receptors: implications for cancer. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2014. 1843(9): p. 1875-1885.
    28. Ahmed, S.M., et al., Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim Biophys Acta Mol Basis Dis, 2017. 1863(2): p. 585-597.
    29. Ooi, B.K., et al., The Role of Natural Products in Targeting Cardiovascular Diseases via Nrf2 Pathway: Novel Molecular Mechanisms and Therapeutic Approaches. Frontiers in Pharmacology, 2018. 9.
    30. Saha, S., et al., An Overview of Nrf2 Signaling Pathway and Its Role in Inflammation. Molecules, 2020. 25(22).
    31. Wu, S., H. Lu, and Y. Bai, Nrf2 in cancers: A double-edged sword. Cancer Med, 2019. 8(5): p. 2252-2267.
    32. Cousins, R.J., J.P. Liuzzi, and L.A. Lichten, Mammalian zinc transport, trafficking, and signals. J Biol Chem, 2006. 281(34): p. 24085-9.
    33. Ediger, T.R. and S.H. Erdman, 31 - Maldigestion and Malabsorption, in Pediatric Gastrointestinal and Liver Disease (Sixth Edition), R. Wyllie, J.S. Hyams, and M. Kay, Editors. 2021, Elsevier: Philadelphia. p. 321-338.e5.
    34. Roohani, N., et al., Zinc and its importance for human health: An integrative review. J Res Med Sci, 2013. 18(2): p. 144-57.
    35. Vallee, B.L., Metallothionein: historical review and perspectives. Experientia Suppl, 1979. 34: p. 19-39.
    36. Maywald, M. and L. Rink, Zinc in Human Health and Infectious Diseases. Biomolecules, 2022. 12(12).
    37. Gammoh, N.Z. and L. Rink, Zinc in Infection and Inflammation. Nutrients, 2017. 9(6).
    38. Prasad, A.S., Zinc: role in immunity, oxidative stress and chronic inflammation. Current Opinion in Clinical Nutrition & Metabolic Care, 2009. 12(6): p. 646-652.
    39. Prasad, A.S., et al., Zinc metabolism in patients with the syndrome of iron deficiency anemia, hepatosplenomegaly, dwarfism, and hypognadism. J Lab Clin Med, 1963. 61: p. 537-49.
    40. Prasad, A.S., et al., Antioxidant effect of zinc in humans. Free Radic Biol Med, 2004. 37(8): p. 1182-90.
    41. Huber, K.L. and J.A. Hardy, Mechanism of zinc-mediated inhibition of caspase-9. Protein Sci, 2012. 21(7): p. 1056-65.
    42. Muroi, M. and K. Tanamoto, Zinc- and oxidative property-dependent degradation of pro-caspase-1 and NLRP3 by ziram in mouse macrophages. Toxicol Lett, 2015. 235(3): p. 199-205.
    43. Stennicke, H.R. and G.S. Salvesen, Biochemical characteristics of caspases-3, -6, -7, and -8. J Biol Chem, 1997. 272(41): p. 25719-23.
    44. Velázquez-Delgado, E.M. and J.A. Hardy, Zinc-mediated allosteric inhibition of caspase-6. J Biol Chem, 2012. 287(43): p. 36000-11.
    45. Fan, Y., et al., Zinc inhibits high glucose-induced NLRP3 inflammasome activation in human peritoneal mesothelial cells. Mol Med Rep, 2017. 16(4): p. 5195-5202.
    46. Bao, B., et al., Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: a potential implication of zinc as an atheroprotective agent. Am J Clin Nutr, 2010. 91(6): p. 1634-41.
    47. Powell, S.R., The antioxidant properties of zinc. J Nutr, 2000. 130(5S Suppl): p. 1447s-54s.
    48. Prasad, A.S., Biochemistry of zinc. Vol. 11. 2013: Springer Science & Business Media.
    49. Li, D., et al., Zinc promotes functional recovery after spinal cord injury by activating Nrf2/HO-1 defense pathway and inhibiting inflammation of NLRP3 in nerve cells. Life Sci, 2020. 245: p. 117351.
    50. Ding, W., et al., ZIP8 mediates the extracellular matrix degradation of nucleus pulposus cells via NF-κB signaling pathway. Biochem Biophys Res Commun, 2021. 550: p. 30-36.
    51. Jarosz, M., et al., Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology, 2017. 25(1): p. 11-24.
    52. Kim, J.H., et al., Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell, 2014. 156(4): p. 730-43.
    53. McCoy, A.J., et al., Cytotoxins of the human pathogen Aeromonas hydrophila trigger, via the NLRP3 inflammasome, caspase‐1 activation in macrophages. European journal of immunology, 2010. 40(10): p. 2797-2803.
    54. McCoy, A.J., et al., Differential regulation of caspase-1 activation via NLRP3/NLRC4 inflammasomes mediated by aerolysin and type III secretion system during Aeromonas veronii infection. J Immunol, 2010. 185(11): p. 7077-84.
    55. Zhang, W., et al., Aeromonas sobria Induces Proinflammatory Cytokines Production in Mouse Macrophages via Activating NLRP3 Inflammasome Signaling Pathways. Front Cell Infect Microbiol, 2021. 11: p. 691445.
    56. Zhao, W., et al., Nrf2 and NF-κB/NLRP3 inflammasome pathways are involved in Prototheca bovis infections of mouse mammary gland tissue and mammary epithelial cells. Free Radic Biol Med, 2022. 184: p. 148-157.
    57. Wu, C.J., et al., Aeromonas Isolates from Fish and Patients in Tainan City, Taiwan: Genotypic and Phenotypic Characteristics. Appl Environ Microbiol, 2019. 85(21).
    58. Thaichinda, S. and N. Kositpantawong, Necrotizing skin and soft-tissue infections associated with septicemia: 7 cases report and review. J Med Assoc Thai, 2008. 91(1): p. 117-23.
    59. Daly, K.A., et al., A rabbit model of peripheral compartment syndrome with associated rhabdomyolysis and a regenerative medicine approach for treatment. Tissue Eng Part C Methods, 2011. 17(6): p. 631-40.
    60. Blevins, H.M., et al., The NLRP3 Inflammasome Pathway: A Review of Mechanisms and Inhibitors for the Treatment of Inflammatory Diseases. Front Aging Neurosci, 2022. 14: p. 879021.
    61. Ngo, V. and M.L. Duennwald, Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. Antioxidants, 2022. 11(12): p. 2345.
    62. Liu, T., et al., NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2017. 2(1): p. 17023.
    63. Ding, Y., et al., The effect of staggered administration of zinc sulfate on the pharmacokinetics of oral cephalexin. Br J Clin Pharmacol, 2012. 73(3): p. 422-7.
    64. Okamura, M., et al., Inhibitory effect of zinc on the absorption of beta-lactam antibiotic ceftibuten via the peptide transporters in rats. Drug Metab Pharmacokinet, 2008. 23(6): p. 464-8.
    65. An, Y., et al., Activation of ROS/MAPKs/NF-κB/NLRP3 and inhibition of efferocytosis in osteoclast-mediated diabetic osteoporosis. Faseb j, 2019. 33(11): p. 12515-12527.
    66. Luo, B., et al., NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS One, 2014. 9(8): p. e104771.
    67. Haase, H. and L. Rink, Multiple impacts of zinc on immune function. Metallomics, 2014. 6(7): p. 1175-80.
    68. Bailey, R.L., et al., Dietary supplement use is associated with higher intakes of minerals from food sources. Am J Clin Nutr, 2011. 94(5): p. 1376-81.
    69. Skrovanek, S., et al., Zinc and gastrointestinal disease. World J Gastrointest Pathophysiol, 2014. 5(4): p. 496-513.
    70. Zackular, J.P., et al., Dietary zinc alters the microbiota and decreases resistance to Clostridium difficile infection. Nat Med, 2016. 22(11): p. 1330-1334.
    71. Johanns, V.C., et al., Effects of a Four-Week High-Dosage Zinc Oxide Supplemented Diet on Commensal Escherichia coli of Weaned Pigs. Front Microbiol, 2019. 10: p. 2734.
    72. Vahjen, W., et al., High dietary zinc supplementation increases the occurrence of tetracycline and sulfonamide resistance genes in the intestine of weaned pigs. Gut Pathog, 2015. 7: p. 23.
    73. Mukundan, S., et al., NLRP3 inflammasome inhibitor as an adjunct host-directed therapy in a hyper susceptible mouse model of Group A Streptococcal Necrotizing Fasciitis. The Journal of Immunology, 2021. 206(1_Supplement): p. 110.17-110.17.
    74. Huang, Y., et al., Tranilast directly targets NLRP3 to treat inflammasome-driven diseases. EMBO Mol Med, 2018. 10(4).
    75. Rushworth, S.A., D.J. MacEwan, and M.A. O'Connell, Lipopolysaccharide-induced expression of NAD(P)H:quinone oxidoreductase 1 and heme oxygenase-1 protects against excessive inflammatory responses in human monocytes. J Immunol, 2008. 181(10): p. 6730-7.

    無法下載圖示 校內:2029-01-10公開
    校外:2029-01-10公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE