| 研究生: |
謝承曄 Hsieh, Cheng-Yeh |
|---|---|
| 論文名稱: |
水下考古影像與水下載具超短基線定位系統之整合 Integration of Underwater Archaeology Images and USBL Positioning System on ROV |
| 指導教授: |
陳政宏
Chen, Jeng-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 水下載具 、定位導航 、超短基線 、水下定位系統 、水下考古 、水下影像 |
| 外文關鍵詞: | underwater vehicle, GPS, USBL, underwater location system, underwater image |
| 相關次數: | 點閱:91 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前台灣水下考古目標物的定位方法大多為人力方式,限制搜尋的範圍,因此本研究目的為水下載具(Remote-control Operated Vehicle,ROV)進行水下考古定位,開發出一套定位座標與ROV拍攝之影像結合系統,利用此系統自動標示古物絕對位置座標,可減少之後需定期往返古物的搜尋時間,並可藉由此系統觀測古物座標位置是否有受洋流影響而改變。此系統有利於未來水下遺址的定期監測、考古,可取代人力,節省人事經費、縮短時間、減少風險外,也可到達較危險及較深海域。
本研究主要採用的水下定位系統為超短基線USBL (Ultra Short Base Line),超短基線佈置與攜帶較為方便,利用水下聲學定位系統定出水面工作母船的相對位置,再藉由接收水下載具上的應答器發出的訊號與GPS搭配追蹤出ROV的絕對座標位置,搜尋水下目標古物,在國立成功大學拖行水槽進行水下定位系統精度實驗,並在安平外海測試水下定位系統與GPS結合後在介面上的使用之可行性,將USBL所偵測之水下目標位置資訊與ROV搜尋得水下目標畫面整合於同一個介面,此介面能記錄水下目標座標位置與影像,為了維護古物以及觀察水下位置變化,同時將此介面資訊畫面建檔保存縮短再次前往同樣地點搜尋目標的時間。
Now, the approach of underwater archeology in Taiwan is almost diving by human, which could limit searching range. As a result, the research would combine underwater located system with ROV (Remote-control Operated Vehicle) which is kind of underwater robit to search antiques. With this system, we could know the target antique’s coordinate, therefore, saving the time of searching antiques which could only conserve in underwater would improve the efficiency of underwater archeology, observe the location of antiques to be affected by current.
The underwater location system was used in reseach is USBL(Ultra Short Base Line) device, which is portable and less setting time, and the principle of device is detecting target’s position by acoustic, at same time this system would combine with GPS (Global Positioning System), and sending data to hub then transferring data into coordinate information on computer. Firstly, the experiment of device precision would test in National Cheng Kung University towing tank, then combining with GPS would test whether the system which concluded USBL, GPS, and image information could condunt on sea field. After all, the information would be designed to show on same interface at same time to implement the purpose of the research.
Allotta, B., Costanzi, R., Ridolfi, A., Colombo, C., Bellavia, F., Fanfani, M., Daviddi, W. (2015). The ARROWS project: adapting and developing robotics technologies for underwater archaeology. IFAC-PapersOnLine, 48(2), 194-199. doi:https://doi.org/10.1016/j.ifacol.2015.06.032
Conte, G., Zanoli, S. M., & Scaradozzi, D. (2010). A Feedback Scheme for Missions Managing in Underwater Archeology. IFAC Proceedings Volumes, 43(16), 229-234. doi:https://doi.org/10.3182/20100906-3-IT-2019.00041
Font, E. G., Bonin-Font, F., Negre, P.-L., Massot, M., & Oliver, G. (2017). USBL Integration and Assessment in a Multisensor Navigation Approach for AUVs 11This work is partially supported by Ministry of Economy and Competitiveness under contracts TIN2014-58662-R, DPI2014-57746-C3-2-R and FEDER funds. IFAC-PapersOnLine, 50(1), 7905-7910. doi:https://doi.org/10.1016/j.ifacol.2017.08.754
Jasinski, M. E., Sortland, B., & Soreide, F. (1995). Applications of remotely controlled equipment in Norwegian marine archaeology. Paper presented at the OCEANS'95. MTS/IEEE. Challenges of Our Changing Global Environment. Conference Proceedings.
Obana, K., Katao, H., & Ando, M. (2000). Seafloor positioning system with GPS-acoustic link for crustal dynamics observation—a preliminary result from experiments in the sea—. Earth, Planets and Space, 52(6), 415-423. doi:10.1186/BF03352253
Pan-Mook, L., Bong-Huan, J., Hyun Taek, C., & Seok-Won, H. (2005, 17-23 Sept. 2005). An integrated navigation systems for underwater vehicles based on inertial sensors and pseudo LBL acoustic transponders. Paper presented at the Proceedings of OCEANS 2005 MTS/IEEE.
Philip, D. R. C. (2003). An evaluation of USBL and SBL acoustic systems and the optimisation of methods of calibration - Part 1.
Rezaei, S., & Sengupta, R. (2007). Kalman Filter-Based Integration of DGPS and Vehicle Sensors for Localization. IEEE Transactions on Control Systems Technology, 15(6), 1080-1088. doi:10.1109/tcst.2006.886439
Rigby, P., Pizarro, O., & Williams, S. B. (2006, 18-21 Sept. 2006). Towards Geo-Referenced AUV Navigation Through Fusion of USBL and DVL Measurements. Paper presented at the OCEANS 2006.
Vasilijevic, A., Borovic, B., & Vukic, Z. (2012). Underwater Vehicle Localization with Complementary Filter: Performance Analysis in the Shallow Water Environment. Journal of Intelligent & Robotic Systems, 68(3), 373-386. doi:10.1007/s10846-012-9766-6
Zieliński, A., & Zhou, L. (2005). Precision acoustic navigation for remotely operated vehicles (ROV). Hydroacoustics, 8, 255-264.
周靜歆. (2006). 水下目標物的偵搜與超短基線水下定位法. 國立臺灣大學海洋研究所碩士學位論文, 1-67.
臧振華, & 劉金源. (2009). 台灣水下考古的啟動:近年來澎湖海域水下考古調查.「2009 海洋與台灣學術研討會」論文集. 158-183.
王舜民. (2013年3月).應用圖形化程式設計卡爾曼濾波器實現AUV速度估測. 中國造船暨輪機工程師學會研討會25屆. 台南市國立成功大學系統及船舶機電工程學系.
傅政凱.(2017年12月).超短基線聲納定位系統(ultra-short baseline acoustic system)功能測試報告書.台南市國立成功大學系統及船舶機電工程學系.