簡易檢索 / 詳目顯示

研究生: 楊士德
Yang, Shih-Te
論文名稱: 熱處理對鑄造合金Ti-7.5Mo機械性質的影響
Effect of heat treatment on mechanical properties of cast Ti-7.5Mo alloy
指導教授: 陳瑾惠
Chern Lin, Jiin-Huey
共同指導教授: 朱建平
Ju, Chien-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 91
中文關鍵詞: 熱處理
外文關鍵詞: titanium, molybdenum, thermo-treatment
相關次數: 點閱:84下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗探討不同熱處理對鑄造合金Ti-7.5Mo所造成的性質影響。本實驗將分為兩部分討論,一方面固定時效溫度,改變時效溫度;另一方面固定時效時間,改變時效溫度。時效溫度的選取有T1℃、T2℃、T3℃,時效時間為t1、t2、t3、t4,固定時效方面固定時間為t2,改變時效溫度分別為T1℃、T4℃、T2℃、T5℃、T3℃和T6℃。實驗結果以時效時間T2℃、時效時間t2可以得到最佳的機械性質,降伏強度927MPa和延12%。
    對生醫植入材而言,為了避免應力遮蔽效應,低彈性模數是被要求的,本實驗得到最低彈性模數為直接鑄造;彈性模數為86GPa,而最高彈性模數為鑄造後直接時效,時效條件為溫度T1℃、時間t6,其值可達到132GPa,中間差距為46GPa,差距變化為最低彈性模數的約53.5%。

    The effect of heat treatment on the properties of as-cast alloy Ti-7.5Mo discussed in this study. Two sets of experiment were carried out in terms of aging temperature and aging time. First, three aging temperatures(T1℃、T2℃、T3℃)were tested , each with four aging times(t1、t2、t3、t4). Second, an aging time of 30mins was tested with 6 aging temperatures(T1℃、T4℃、T2℃、T5℃、T3℃、T6℃).It was found that the condition of aging temperature at T2℃ for t2 gave the best mechanical properties with yielding strength 927MPa and elongation 12%.
    For bio-implant applications, low modulus is desirable for avoiding stress shielding effect, in this study, the as-cast Ti-7.5Mo alloy has the lowest modulus than other heat treatment condition, which value is 86GPa, and aging temperature at T1℃ for t6 has the highest one, the value is 132GPa, the difference of the value is 53.5% of the lowest one.

    熱處理對鑄造合金Ti-7.5Mo機械性質的影響 總目錄 第一章 前言........................................1 1-1研究背景.......................................1 1-2生醫材料概論...................................1 1-3生醫材料的分類..................................2 1-3-1金屬生醫材料................................2 1-3-2高分子生醫材料..............................3 1-3-3陶瓷生醫材料................................3 1-3-4生醫複合材料................................4 1-4研究目的........................................6 第二章 文獻回顧 ....................................8 2-1金屬生醫材料的發展...............................8 2-1-1不銹鋼(Stainless steel)..........................8 2-1-2鈷基合金(Cobalt-base alloy).....................10 2-1-3鈦合金(Ti-alloy)..............................10 2-2鈦的發展 ......................................11 2-3純鈦的性質 ....................................13 2-4純鈦及鈦合金之類別與應用..........................16 2-4-1 α型或near α型鈦合金........................18 2-4-2 β型鈦合金.................................22 2-4-3 α+β型鈦合金................................25 2-5 Mo當量.......................................25 2-6鈦合金的非平衡相................................26 2-7 α相的析出......................................30 2-8應力遮蔽效應 ..................................30 2-9 Ti-Mo合金的發展.................................31 第三章 理論基礎....................................34 3-1熱處理.........................................34 3-1-1固溶處理(Solution Treatment).....................34 3-1-2淬火(Quench)...............................34 3-1-3時效處理(Aging) ... ..........................35 3-2析出硬化(Precipitation Hardening) ......................37 3-2-1析出硬化的條件..............................37 3-2-2析出硬化機構...............................38 3-2-2-1整合性應變硬化(Coherent strain hardening)...........38 3-2-2-2化學硬化(Chemical hardening).....................39 3-2-2-3 Orowan散布硬化(Orowan mechanism)..............40 3-3破斷機構(Fracture Mechanism).........................42 3-3-1延性破斷(Ductile Fracture)......................42 3-3-2脆性破斷(Brittle Fracture)....................... 44 第四章 實驗步驟與方法...............................45 4-1實驗流程.......................................45 4-2合金材料及製備..................................46 4-3合金熔煉.......................................47 4-4合金鑄造.......................................50 4-5試片製作.......................................51 4-6固溶處理.......................................51 4-7時效處理.......................................52 4-8拉伸測試.......................................52 4-9掃描式電子顯微鏡(Scanning Electron Microscope, SEM) ......54 4-10 X光繞射(X-Ray Diffraction,XRD)相分析..............54 4-11光學顯微鏡(Optical Microscope, OM).................. 55 4-12微硬度測試....................................55 第五章 結果與討論...................................57 5-1 XRD相組成分析.................................57 5-2金相組織分析....................................62 5-3拉伸機械性質....................................68 5-3-1一次時效拉伸機械性質........................68 5-3-2經固溶後時效拉伸機械性質.....................73 5-3-3鑄造後直接一次時效與二次時效拉伸機械性質.......74 5-4拉伸破斷面觀察..................................76 5-5微硬度分析.......................................83 第六章 總結論......................................87 第七章 參考文獻....................................89

    A書籍:
    1. Bania PJ., “Beta titanium alloys and their role in the titanium industry”, In: Eylon D, Boyer R, Koss D, editors. Beta titanium alloys in the 1990's. Warrendale, PA: TMS, p. 3-14, 1993.
    2. Clemson Advisory Board for Biomaterials “Definition of the word biomaterial”, The 6th Annal Intermalionel Biomaterial Symposium, April 20-24, 1974.
    3. E.W. Collings, Physical Metallurgy of Titanium Alloys. The Physical Metallurgy of Titanium Alloys, USA, 1988.
    4. Fedotov SG.“Peculiarities of Changes in Elastic Properties of Ti Martensite”, Titanium Science and Technology , 2:871-81.1973.
    Heimke G., Smoltz V. and Lee A.J.C (des.) Advances in Materials, Elsevier Amsterdam, Vol., 9 129-143.
    5. H. Yamada, Strength of biological materials, Williams and Wilkins, Baltimore, 1970.
    6. J.L. Murray, L.H. Bennett, H. Baker, Binary Phase Diagram, American Society for Metals, USA, 1986.
    7. Molchanova EK, ”phase diagrams of titanium alloys”[transl. of Atlas diagram sostoyaniya titanovyk splavov], Israel program for scientific translations, Jerusalem,1965.
    8. M.J. Blackburn, J.C. Williams, Phase transformation in Ti-Mo and Ti-V alloys, Transaction of TMS-AIME, 242, 2461-2469, 1968.
    9. R.I. Jaffee, N.E. Promisel, The Science, Technology, and Applications of Titanium, 851, 1970.
    10. Roa S, UshidaT, Tateishi T, Okazaki Y, Asao S. Effect of Ti, Al and V ions on the relative growth rate of fibroblasts (L929).Bimed Mater Engng ,6,79-86,1996.
    11. Smith W.F., “Structure and Properties of Engineering Alloys”, McGraw-Hill, Inc., USA, 433-484, 1993.
    12. T. Furuhara, T. Maki, T. Makino, Microstructure control by thermomechanicl processing in β-Ti-15- alloys, Journal of Materials Processing Technology, 117, 318-323, 2001.
    13. Williams JC, Hickman BS and Leslie DH,“The effect of ternary additions on the decomposition of metastable β-phase titanium alloys”, Metal. Trans., vol.12,pp:477-484,1971.
    14. Wolff J, “Das Gesetz Der Transformation Der Knochen”, Hirshwald Verlag, Berlin, 1892.
    15. Y.L. Zhou, M. Niinomi, T. Akahori, Decomposition of martensite α” during aging treatment and resulting mechanical properties of Ti-Ta alloys, Materials Science and Engineering A, 371, 283-290, 2004.
    16. 林峰輝/王正一,生醫材料概論,教育部醫學工程科技教育改進計畫,2000.
    17. 侯貫智,2008鐵金屬特輯-鈦金屬篇,金屬工業研究發展心,2008.
    18. 賴耿陽,金屬鈦理論與應用,復漢出版社,1990.
    19. 金重勳,熱處理,復文出版,1987.
    20. 劉文海,全球鈦金屬市場分析,1990.
    B論文期刊:
    1. 何文福, 鑄造鈦-鉬合金之結構及性質研究,成功大學材料工程研究所博士論文,1999.
    2. 簡嘉毅,鈦-鉬合金熱處理後拉伸疲勞性質研究,成功大學材料工程研究所碩士論文,2005.
    3. 林群堡,熱處理對鈦-鉬合金機械性質的影響,成功大學材料工程研究所碩士論文,2006.
    4. 蔡天成,鉍的添加對Ti-15Mo合金性質的影響,成功大學材料工程研究所碩士論文,2007.
    5. 蔡翔威,鈦-鉬合金在漢克溶液中的腐蝕疲勞行為研究,成功大學材料工程研究所碩士論文,2007.
    6. 林士哲,熱機處理對鈦-鉬合金機械性質的影響,成功大學材料工程研究所碩士論文,2009.
    7. 林家緯,鑄造鈦-鉬合金疲勞性質研究,成功大學材料工程研究所博士論文,2005.
    8.陳原逢,牙科用鈦合金鑄造與腐蝕性質之探討,成功大學礦冶及材料科學研究所,1999.
    C網頁資料及其他:
    1. 鈦材料熱處理http://baike.sososteel.com/doc/view/44833.html

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE