| 研究生: |
蔡天成 Tsai, Tian-Cheng |
|---|---|
| 論文名稱: |
鉍的添加對Ti-15Mo合金性質的影響 Effect of bismuth addition on properties of Ti-15Mo alloy |
| 指導教授: |
朱建平
Ju, Chien-Ping 陳瑾惠 Chern, Jiin-Huey |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 電化學 、生物活性 、拉伸測試 、鈦合金 |
| 外文關鍵詞: | cell's viability, Ti alloys, corrosion resistance, tensile |
| 相關次數: | 點閱:123 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以室溫滾壓的Ti-15wt%Mo-1wt%Bi經各種不同條件的固溶和時效處理,結果以TS℃固溶tS1和TM℃時效tA3的拉伸性質為最佳,因此以該條件探討添加Bi對Ti-15wt%Mo拉伸性質的影響,結果顯示添加Bi可改善其拉伸性質。
除此之外,也探討添加Bi對Ti-15wt%Mo的加工性、電化學測試和生物活性的影響。結果顯示添加Bi會影響加工性,而電化學測試和生物活性則無差異。
The first step of the present study is that the alloy Ti-15wt%Mo-1wt%Bi was rolled at room temperature. Then it was treated with the different solution and aging treatment procedures. The best experiment result was solution treated at TS℃ for tS1 and aging treated at TM℃ for tA3, hence we chose the parameter for effect of bismuth addition on tensile property of Ti-15wt%Mo alloy. The result shows that adding bismuth can improve tensile property of Ti-15wt%Mo alloy.
In addition, the present study also compares workability, corrosion resistance and cell's viability between Ti-15wt%Mo and Ti-15wt%Mo-1wt%Bi alloys. Experimental results indicate that adding bismuth would influence the workability, but it would not influence the corrosion's behavior and cell's viability .
C. Ouchi, H. Fukai, K. Hasegawa, Microstructural characteristics and unique properties obtained by solution treating or aging in β-rich α+β titanium alloy, Materials Science and Engineering A263 (1999) 132–136
D.F. Williams and R. Roaf, “Implants in Surgery”, Chap. 1, W. B. Saunders Co., Philadelphia, 1973.
D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro, Materials Science and Engineering A243 (1998) 244–249.
E. Merian, “Metalle in der Umwelt: Verteilung, Analytik und biologische Relevanz,” Verlag Chemie, Weinheim.
E. Sukedai, D. Yoshimitsua, H. Matsumotoa, H. Hashimotoa and M. Kiritanib, β to ω phase transformation due to aging in a Ti–Mo alloy deformed in impact compression, Materials Science and Engineering A350 (2003) 133-138
F.H. Froes, C.F. Yolton, J.M. Capenos, M.G.H. Wells, J.C. Williams, Metall. Trans. 11A (1980) 21–31.
Flower HM, Davis R, West DRF. Titanium and titanium alloys, scientific and technological aspects. NY: Plenum Press; 1982. p.1703.
G. I. Nosova, Phase Transformations in Titanium Alloys (Metallurgiya, Moscow, 1968) [in Russian].
H.M. Flower, Mater. Sci. Technol. 6 (1990)1082-1092.
I. G. Macara, “Vanadium, an element in search of a role,” Trends Biochem. Sci., 5, 92-95, 1980.
I. Weiss, S.L. Semiatin. Materials Science and Engineering A243(1998)46-65.
I.Weiss, S.L. Semiatin. Materials Science and Engineering A263(1999)243-256.
J. O. Galante and W. Rostocker, “Wear in total hip prostheses: An experimental evaluation of candidate materials,” Acta Orthop. Scand., 145, 6-46, 1973.
L. C. Clarke, H. A. McKellop, P. McGuire, R. Okuda, and E. Ebramzadeh, “In vivo wear of titanium alloy hip prostheses,” J. Bone Joint Surg., 72A, 512-517, 1990.
M. A. Khan, R. L. Williams, and D. F. Williams, “Conjoint corrosion and wear in titanium alloys,” Biomaterials, 20, 765-772, 1999.
Metals Handbook, 9th ed., Vol.13, Corrosion, ASM Intermational.Ohio,1988.
M.J. Long and H.J. Rack, Titanium alloys in total joint replacement—a materials science perspective, Biomaterials 19 (1998), pp. 1621–1639.
M. Niinomi, Mechanical properties of biomedical titanium alloys, Materials Science and Engineering A243 (1998) 231–236.
R.E. Reed-Hill, Physical metallurgy principles, PWS, USA, 748-761, 1994
R.L. Buly, Titanium wear debris in failed cemented total hip
arthroplasty, J. Arthroplasty, 7 (3) (1992) 315-323.
T. Hanawa, In vivo metallic biomaterials and surface modification, Materials Science and Engineering, A267, 260-266, 1999.
T.W. Duerig, R. Zadno, in: T.W. Duerig (Ed.), An Enginer’s Perspectives of Pseudoelasticity, Engineering aspect of SMA, Butterworth- Heinemann Publishers, London, 1990.
W. Schutz, Environmental behavior of beta titanium alloys, JOM (1994), 24–29.
Y. L. Zhoua, M. Niinomi, T. Akahori, H. Fukui, H. Toda, Corrosion resistance and biocompatibility of Ti–Ta alloys for biomedical applications, Materials Science and Engineering A 398 (2005) 28–36.
‘鈦金屬及其應用’編輯委員會編, 鈦金屬及其應用, 日本日刊工業新聞社.
楊榮顯, 工程材料學, 全華出版社, 出版1997.
林群堡, 熱處理對鈦-鉬合金機械性質的影響, 國立成功大學材料工程研究所碩士論文, 2006.
校內:2106-07-30公開