| 研究生: |
楊映茹 Yang, Ying-Ru |
|---|---|
| 論文名稱: |
臺灣大氣細懸浮微粒管制策略分析與改善有效性評估 Assessment on Fine Particulate Matter Control Strategy for Airborne Concentration Improvement in Taiwan. |
| 指導教授: |
蔡俊鴻
Tsai, Jiun-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 228 |
| 中文關鍵詞: | CMAQ 、管制策略 、排放減量效益 、細懸浮微粒(PM2.5) |
| 外文關鍵詞: | CMAQ, Control stratage, Emission reduction effect, Fine particulate matter (PM2.5) |
| 相關次數: | 點閱:107 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的為檢視臺灣地區現行管制策略下空氣品質改善性,及PM2.5達年平均標準(15μg/m3) SOx、NOx、PM2.5之減量需求與管制策略建議。工作分為兩部分:(一) 103年基準情境、109年目標年情境(參考環保署修正版「臺灣清淨空氣行動計畫」)之排放量推估與CMAQ模式模擬評析、(二)參考(一)結果與相關文獻,設計情境以模式推估全臺PM2.5年平均達標之減量需求。
推估103基準年排放量為128.7千噸SOx、425.4千噸NOx及80.0千噸PM2.5,經CMAQ模擬結果一月29.5μg/m3 > 四月28.5μg/m3 > 十月27.4μg/m3 > 七月13.6μg/m3,四個月平均濃度為24.7μg/m3,相較觀測值低估14.9%。模擬PM2.5濃度主要分佈於臺灣西半部尤其中南部及高屏地區,原生性PM2.5於各月份地區PM2.5質量佔比最高,硫酸鹽於北部、東半部地區以及PM2.5濃度較低月份質量佔比較高,硝酸鹽則於高PM2.5濃度月份與中南部地區佔比大於硫酸鹽。
推估109目標年排放量,參考環保署104/105年清淨空氣行動計畫減量及自然成長計算結果為93.8千噸SOx、285.7千噸NOx及60.8千噸PM2.5,以CMAQ模擬各季代表月份計算得109年全年平均濃度為22.5μg/m3,平均改善率為10.9%,以夏季(5~7月)改善率較佳(-18%)而春、冬季(12~4月)改善率較差(-10%),各空品區以中部改善率最高(13.4 %)其次為高屏及雲嘉南空品區,整體而言,現行管制策略減量無法使臺灣地區於109年達成PM2.5年平均標準。
解析109目標年SOx、NOx與PM2.5排放減量百分比與硫酸鹽、硝酸鹽及原生PM2.5濃度改善關係,一、四、七、十月及各地區皆以減少直接排放PM2.5效益最高,七月全臺地區、四、十月竹苗以北及東半部以SOx減量效益較高,一月整體臺灣地區(除北部與花東地區)及十月中南部地區以NOx減量效益較高,四月中南部地區SOx及NOx減量效益相似。援引109目標年減量效益解析成果及國內相關文獻研究,設計三組達標減量組合情境,情境一參考李(2016)額外策略減量將103基準年三種前驅污染物排放各減量50%,以模式推估109年平均濃度為19.7μg/m3,平均改善率為21.8%;情境二延續情境一將中南部地區面源、線源之PM2.5、NOx減量比例進行強化,經模擬推論年平均濃度為18.5μg/m3,平均改善率為26.5%;情境三參考Chen(2017)提升SOx、NOx、直接排放PM2.5減量百分比至70%、80%、75%,模擬推論年平均濃度為15.69μg/m3,平均改善率為37.7%,已接近年平均標準但仍需調整減量。
解析本研究各情境模擬資料,優先考量加強PM2.5減量並以線性回歸式推算達標減量需求,設計情境四減量為全臺SOx、NOx維持情境三減量比例,PM2.5減量提升至85%,模擬未來年推論濃度結果顯示全臺灣年平均濃度14.99μg/m3已達標準,平均改善率為40.4%,除中部(15.4μg/m3)與雲嘉南(17.5μg/m3)未達標外,其餘空品區皆符合標準,顯示除全臺減量相同比例方式,亦需考慮各地區空氣品質條件及污染特性進行區域性減量調整設計。
計算臺灣地區PM2.5達年平均標準減量需求差額,經103至109年間自然成長及現行管制策略排放變化,減量需求於SOx差42.9%、NOx差47%、PM2.5差61%,為減少上述前驅物減量負擔,以指標方式討論NH3之減量效益並結合目標前驅物減量策略建議,顯示全臺各區各季節皆以原生性PM2.5管制效益最高,以道路揚塵、餐飲油煙及裸露地表風蝕減量潛勢最高;夏季時期管制SOx成效高於NOx且根據指標分析顯示NH3管制效果並不佳。進入秋、冬季高濃度地區(中部、雲嘉南、高屏空品區)除原生PM2.5外應優先推動NOx管制,另外指標分析顯示於中南部地區加入NH3管制,應有相當程度改善效益,此外SOx以電力業、船舶燃燒(柴油發電)減量潛勢最高,NOx以電力業及柴油大貨車最高。
This study estimated the effect of PM2.5 control stratage on ambient concentration in Taiwan and estimated Emission reduced demand to meet air quality standard. Air quality model (CMAQ) was conducted to simulate the concentration of PM2.5 under Clean Air Plan promoted by Taiwan EPA and different standard strategy scenarios. The results of PM2.5 concentration simulation showed that the high PM2.5 concentrations were observed in central and southern Taiwan. Annual average concentration of PM2.5 for Clean Air Plan scenarios is 22.5μg/m3 reduction 10.9% as compared to base case.The PM2.5 simulated concentration of three standard achieved scenarios which adjusted the reduction percentage of SOx、NOx、PM2.5 according to different referance are 19.7、18.5、15.7μg/m3,respectivly. Analyzing above senarios,the emission of SOx、NOx、PM2.5 would need to reduce 70%、80%、85% in Taiwan to meet the air quality standard.The results also implied that control primary PM2.5 emissions may improve airborne PM2.5 concentration in Taiwan, in winter control NOx emissions may result in significant improvement on airborne PM2.5 concentration in central and southern Taiwan.
1. Ansari, A. S. and S. N. Pandis, 1998: Response of Inorganic PM to Precursor Concentrations. Environmental Science & Technology, 32, 2706-2714.
2. Appel, K. W., C. Chemel, S. J. Roselle, X. V. Francis, R.-M. Hu, R. S. Sokhi, S. T. Rao and S. Galmarini, 2012: Examination of the Community Multiscale Air Quality (CMAQ) model performance over the North American and European domains. Atmospheric Environment, 53, 142-155.
3. Blanchard, C. L., P. M. Roth, S. J. Tanenbaum, S. D. Ziman and J. H. Seinfeld, 2000: The Use of Ambient Measurements To Identify which Precursor Species Limit Aerosol Nitrate Formation. Journal of the Air & Waste Management Association, 50, 2073-2084.
4. Cai, S., Y. Wang, B. Zhao, S. Wang, X. Chang and J. Hao, 2017: The impact of the “Air Pollution Prevention and Control Action Plan” on PM2.5 concentrations in Jing-Jin-Ji region during 2012–2020. Science of The Total Environment, 580, 197-209.
5. Che, W., J. Zheng, S. Wang, L. Zhong and A. Lau, 2011: Assessment of motor vehicle emission control policies using Model-3/CMAQ model for the Pearl River Delta region, China. Atmospheric Environment, 45, 1740-1751.
6. Chemel, C., B. E. A. Fisher, X. Kong, X. V. Francis, R. S. Sokhi, N. Good, W. J. Collins and G. A. Folberth, 2014: Application of chemical transport model CMAQ to policy decisions regarding PM2.5 in the UK. Atmospheric Environment, 82, 410-417.
7. Chen, J., J. Lu, J. C. Avise, J. A. DaMassa, M. J. Kleeman and A. P. Kaduwela, 2014a: Seasonal modeling of PM2.5 in California's San Joaquin Valley. Atmospheric Environment, 92, 182-190.
8. Chen, T.-F., K.-H. Chang and C.-Y. Tsai, 2014b: Modeling direct and indirect effect of long range transport on atmospheric PM2.5 levels. Atmospheric Environment, 89, 1-9.
9. Chen, T.-F., K.-H. Chang and C.-Y. Tsai, 2017: Modeling approach for emissions reduction of primary PM2.5 and secondary PM2.5 precursors to achieve the air quality target. Atmospheric Research, 192, 11-18.
10. Cheng, Y., S. Lee, Z. Gu, K. Ho, Y. Zhang, Y. Huang, J. C. Chow, J. G. Watson, J. Cao and R. Zhang, 2015: PM2.5 and PM10-2.5 chemical composition and source apportionment near a Hong Kong roadway. Particuology, 18, 96-104.
11. Cheng, Z., L. Luo, S. Wang, Y. Wang, S. Sharma, H. Shimadera, X. Wang, M. Bressi, R. M. de Miranda, J. Jiang, W. Zhou, O. Fajardo, N. Yan and J. Hao, 2016: Status and characteristics of ambient PM2.5 pollution in global megacities. Environment International, 89, 212-221.
12. Choi, J.-K., J.-B. Heo, S.-J. Ban, S.-M. Yi and K.-D. Zoh, 2012: Chemical characteristics of PM2.5 aerosol in Incheon, Korea. Atmospheric Environment, 60, 583-592.
13. Chow, J. C., L. W. A. Chen, J. G. Watson, D. H. Lowenthal, K. A. Magliano, K. Turkiewicz and D. E. Lehrman, 2006: PM2.5 chemical composition and spatiotemporal variability during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS). Journal of Geophysical Research: Atmospheres, 111, n/a-n/a.
14. Chuang, M.-T., Y.-C. Chen, C.-T. Lee, C.-H. Cheng, Y.-J. Tsai, S.-Y. Chang and Z.-S. Su, 2016: Apportionment of the sources of high fine particulate matter concentration events in a developing aerotropolis in Taoyuan, Taiwan. Environmental Pollution, 214, 273-281.
15. Fang, G.-C. and S.-C. Chang, 2010: Atmospheric particulate (PM10 and PM2.5) mass concentration and seasonal variation study in the Taiwan area during 2000–2008. Atmospheric Research, 98, 368-377.
16. Holt, J., N. E. Selin and S. Solomon, 2015: Changes in Inorganic Fine Particulate Matter Sensitivities to Precursors Due to Large-Scale US Emissions Reductions. Environmental Science & Technology, 49, 4834-4841.
17. Hsu, C.-H. and F.-Y. Cheng, 2016: Classification of weather patterns to study the influence of meteorological characteristics on PM2.5 concentrations in Yunlin County, Taiwan. Atmospheric Environment, 144, 397-408.
18. Hu, J., L. Huang, M. Chen, G. He and H. Zhang, 2017: Impacts of power generation on air quality in China—Part II: Future scenarios. Resources, Conservation and Recycling, 121, 115-127.
19. Koo, B., G. M. Wilson, R. E. Morris, A. M. Dunker and G. Yarwood, 2009: Comparison of Source Apportionment and Sensitivity Analysis in a Particulate Matter Air Quality Model. Environmental Science & Technology, 43, 6669-6675.
20. Li, N., J.-P. Chen, I. C. Tsai, Q. He, S.-Y. Chi, Y.-C. Lin and T.-M. Fu, 2016: Potential impacts of electric vehicles on air quality in Taiwan. Science of The Total Environment, 566, 919-928.
21. Lin, J. J., 2002: Characterization of the major chemical species in PM2.5 in the Kaohsiung City, Taiwan. Atmospheric Environment, 36, 1911-1920.
22. Pinder, R. W., R. L. Dennis and P. V. Bhave, 2008: Observable indicators of the sensitivity of PM2.5 nitrate to emission reductions—Part I: Derivation of the adjusted gas ratio and applicability at regulatory-relevant time scales. Atmospheric Environment, 42, 1275-1286.
23. Plessow, K., G. Spindler, F. Zimmermann and J. Matschullat, 2005: Seasonal variations and interactions of N-containing gases and particles over a coniferous forest, Saxony, Germany. Atmospheric Environment, 39, 6995-7007.
24. Qin, M., X. Wang, Y. Hu, X. Huang, L. He, L. Zhong, Y. Song, M. Hu and Y. Zhang, 2015: Formation of particulate sulfate and nitrate over the Pearl River Delta in the fall: Diagnostic analysis using the Community Multiscale Air Quality model. Atmospheric Environment, 112, 81-89.
25. Qin, Y., E. Kim and P. K. Hopke, 2006: The concentrations and sources of PM2.5 in metropolitan New York City. Atmospheric Environment, 40, 312-332.
26. Querol, X., A. Alastuey, T. Moreno, M. M. Viana, S. Castillo, J. Pey, S. Rodríguez, B. Artiñano, P. Salvador, M. Sánchez, S. Garcia Dos Santos, M. D. Herce Garraleta, R. Fernandez-Patier, S. Moreno-Grau, L. Negral, M. C. Minguillón, E. Monfort, M. J. Sanz, R. Palomo-Marín, E. Pinilla-Gil, E. Cuevas, J. de la Rosa and A. Sánchez de la Campa, 2008: Spatial and temporal variations in airborne particulate matter (PM10 and PM2.5) across Spain 1999–2005. Atmospheric Environment, 42, 3964-3979.
27. Seinfeld, J. H. and S. N. Pandis, 1998: Atmospheric chemistry and physics: from air pollution to climate change. Wiley.
28. Takahama, S., A. E. Wittig, D. V. Vayenas, C. I. Davidson and S. N. Pandis, 2004: Modeling the diurnal variation of nitrate during the Pittsburgh Air Quality Study. Journal of Geophysical Research: Atmospheres, 109, n/a-n/a.
29. Tsai, Y. I. and S.-C. Kuo, 2005: PM2.5 aerosol water content and chemical composition in a metropolitan and a coastal area in southern Taiwan. Atmospheric Environment, 39, 4827-4839.
30. Vieno, M., M. R. Heal, M. L. Williams, E. J. Carnell, E. Nemitz, J. R. Stedman and S. Reis, 2016: The sensitivities of emissions reductions for the mitigation of UK PM2.5. Atmos. Chem. Phys., 16, 265-276.
31. Wang, J., B. Zhao, S. Wang, F. Yang, J. Xing, L. Morawska, A. Ding, M. Kulmala, V.-M. Kerminen, J. Kujansuu, Z. Wang, D. Ding, X. Zhang, H. Wang, M. Tian, T. Petäjä, J. Jiang and J. Hao, 2017: Particulate matter pollution over China and the effects of control policies. Science of The Total Environment, 584–585, 426-447.
32. Wang, L., C. Jang, Y. Zhang, K. Wang, Q. Zhang, D. Streets, J. Fu, Y. Lei, J. Schreifels, K. He, J. Hao, Y.-F. Lam, J. Lin, N. Meskhidze, S. Voorhees, D. Evarts and S. Phillips, 2010: Assessment of air quality benefits from national air pollution control policies in China. Part II: Evaluation of air quality predictions and air quality benefits assessment. Atmospheric Environment, 44, 3449-3457.
33. Wang, S., J. Xing, C. Jang, Y. Zhu, J. S. Fu and J. Hao, 2011: Impact Assessment of Ammonia Emissions on Inorganic Aerosols in East China Using Response Surface Modeling Technique. Environmental Science & Technology, 45, 9293-9300.
34. West, J. J., A. S. Ansari and S. N. Pandis, 1999: Marginal PM25: Nonlinear Aerosol Mass Response to Sulfate Reductions in the Eastern United States. Journal of the Air & Waste Management Association, 49, 1415-1424.
35. Wu, S.-Y., S. Krishnan, Y. Zhang and V. Aneja, 2008: Modeling atmospheric transport and fate of ammonia in North Carolina—Part I: Evaluation of meteorological and chemical predictions. Atmospheric Environment, 42, 3419-3436.
36. Xujia, J., H. Chaopeng, Z. Yixuan, Z. Bo, G. Dabo, G. Andy, Z. Qiang and H. Kebin, 2015: To what extent can China’s near-term air pollution control policy protect air quality and human health? A case study of the Pearl River Delta region. Environmental Research Letters, 10, 104006.
37. Zhang, H., G. Chen, J. Hu, S.-H. Chen, C. Wiedinmyer, M. Kleeman and Q. Ying, 2014: Evaluation of a seven-year air quality simulation using the Weather Research and Forecasting (WRF)/Community Multiscale Air Quality (CMAQ) models in the eastern United States. Science of The Total Environment, 473, 275-285.
38. Zhang, Y., W. Huang, T. Cai, D. Fang, Y. Wang, J. Song, M. Hu and Y. Zhang, 2016: Concentrations and chemical compositions of fine particles (PM2.5) during haze and non-haze days in Beijing. Atmospheric Research, 174, 62-69.
39. Zhang, Y., K. Vijayaraghavan, X.-Y. Wen, H. E. Snell and M. Z. Jacobson, 2009: Probing into regional ozone and particulate matter pollution in the United States: 1. A 1 year CMAQ simulation and evaluation using surface and satellite data. Journal of Geophysical Research: Atmospheres, 114, n/a-n/a.
40. Zhao, B., S. Wang, J. Wang, J. S. Fu, T. Liu, J. Xu, X. Fu and J. Hao, 2013: Impact of national NOx and SO2 control policies on particulate matter pollution in China. Atmospheric Environment, 77, 453-463.
41. 余曼瑋, 2015: 境內與境外排放源對臺灣空氣品質影響之模擬研究. 環境與安全衛生工程系. 國立雲林科技大學, 雲林縣.
42. 李沛瑜, 2014: 不同重要污染源對空氣品質影響之模擬研究. 環境與安全衛生工程系. 國立雲林科技大學, 雲林縣.
43. 李明曄, 2016: 臺灣地區細懸浮微粒減量對策之空氣品質改善有效性評析. 環境工程學系. 國立成功大學, 台南市.
44. 底宗鴻, 2008: 高雄地區陸域及鄰近海域懸浮微粒物化特性分析及時空分佈探討. 環境工程研究所. 國立中山大學, 高雄市.
45. 林鉅富, 1999: 高雄地區大氣中懸浮微粒PM2.5特性及來源之探討. 環境工程研究所. 國立中山大學, 高雄市.
46. 梁志鋒, 2006: 受體模式CMB與PMF之比較與驗證. 環境工程學系所. 國立中興大學, 台中市.
47. 許芳慈, 2016: 以去耦合直接法模擬分析台灣各重要行業別對PM2.5之影響. 環境與安全衛生工程系. 國立雲林科技大學, 雲林縣.
48. 蔡德明, 2006: 應用Models-3/CMAQ以PCcluster研究高速公路網與電廠對南高屏地區臭氧濃度之影響. 環境工程學系碩博士班. 國立成功大學, 台南市.
49. 蔡瀛逸, 1999: 台灣中部都會及沿海地區能見度與大氣氣膠化學特性關係之研究. 環境工程學系. 國立中興大學, 台中市.
50. 賴威帆, 2009: 應用氣流軌跡與大氣微粒成份解析粒狀物污染事件日特徵. 環境工程學系碩博士班. 國立成功大學, 台南市.
51. 賴軍佑, 2011: 境外傳輸之懸浮微粒及其前驅物對台灣之長期影響模擬分析. 環境與安全衛生工程系碩士班. 國立雲林科技大學, 雲林縣.
52. 薛智遠, 2011: 北部地區細懸浮微粒化學成份及來源貢獻暨民眾細懸浮微粒暴露之研究. 環境工程與管理系碩士班. 朝陽科技大學, 台中市.
53. 謝坤龍, 2016: 天氣型態對雲林地區細懸浮微粒濃度與組成之影響. 公共衛生學系碩士班. 中山醫學大學, 台中市.
54. 台灣電力股份有限公司,(2013),火力電廠空污排放對細懸浮微粒(PM2.5)之影響與因應對策研究
55. 行政院環境保護署,(2008),空氣品質指標調整規劃及細懸浮微粒(PM2.5)空氣品質改善策略推動與效期評估
56. 行政院環境保護署,(2011),推動總量管制及細懸浮微粒管制策略
57. 行政院環境保護署105年空氣品質監測年報
58. 行政院環境保護署103年空氣污染防制總檢討報告
59. 行政院環境保護署104年空氣污染防制總檢討報告
60. 行政院環境保護署,(2007),空氣品質指標調整規劃及細懸浮微粒(PM2.5)空氣品質改善策略推動與效益評估
61. 行政院環境保護署,(2011),臺灣清淨空氣計畫規劃暨近程施行方案研訂
62. 行政院環境保護署,(2015),清淨空氣行動計畫(104至109年)」
63. 行政院環境保護署,(2016),修正版清淨空氣行動計畫-防治煙塵掃除PM2.5
64. 行政院環境保護署,(2015),研擬地方政府對細懸浮微粒減量工作分析及規劃方法
65. 行政院環境保護署,(2013),檢討空氣污染物排放清冊及排放趨勢與分佈查詢更新計畫
66. 行政院環境保護署,(2014),細懸浮微粒(PM2.5)化學成分監測計畫
67. 行政院環境保護署,(2013),細懸浮微粒(PM2.5)管制策略研擬及減量成效分析
68. 行政院環境保護署,(2013),臺灣細懸浮微粒(PM2.5)成因分析與管制策略研擬
69. 行政院環境保護署,(2015),臺灣細懸浮微粒(PM2.5)成分與行程速率分析