簡易檢索 / 詳目顯示

研究生: 吳宗諭
Wu, Zong-Yu
論文名稱: 以化學氣相沉積法成長碘化錫銫鈣鈦礦薄膜及溴化錫銫鈣鈦礦微米結構之螢光特性研究
Photoluminescence Properties of B-γ CsSnI3 Films and α-CsSnBr3 Microstructures Synthesized by Chemical Vapor Deposition
指導教授: 徐旭政
Hsu, Hsu-Cheng
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 146
中文關鍵詞: 錫鹵化物鈣鈦礦化學氣相沉積法微米結構隨機雷射高溫光致發光性質
外文關鍵詞: Sn-based halide perovskites, Chemical vapor deposition, Microstructures, Random laser, High-temperature-dependent photoluminescence properties, Thermal photoluminescence quenching
ORCID: 0000-0002-3293-5965
相關次數: 點閱:114下載:45
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,鉛鹵化物鈣鈦礦 (Pb-based halide perovskites) 引起人們的注目。由於鉛鹵化物鈣鈦礦擁有不凡的物理特性,例如:優異的發光效率、較高的激子束縛能和可調變的發光波長…等。是故它們被廣泛應用於各式的發光元件,如:發光二極體和雷射元件。然而,鉛離子的毒性卻成為這類鈣鈦礦的致命傷,產生破壞環境生態及對生物有害的隱憂,進而對其發展產生極大的阻礙。為此,無數的科學家以製作出對環境友善及低毒性的鈣鈦礦材料為目標,日以繼夜地研究及改良。在繁多的無鉛鈣鈦礦材料中,錫鹵化物鈣鈦礦 (Sn-based halide perovskites) 嶄露頭角,成為備受期待的新星。相較於鉛鹵化物鈣鈦礦,錫鹵化物鈣鈦礦擁有較低的毒性,被認為能有效降低對環境及生物的有害程度。此外,由於錫和鉛屬於同族元素,因此錫鹵化物鈣鈦礦擁有和鉛鹵化鈣鈦礦相似的晶體結構。同時,錫鹵化物鈣鈦礦也展現出類似鉛鹵化物鈣鈦礦的物理特性。值得一提的是,錫鹵化物鈣鈦礦分解後會形成對環境傷害較低的二氧化錫 (SnO2),因此這類鈣鈦礦也被視為「綠色材料」。是以錫鹵化物鈣鈦礦成為未來發展高效能無鉛鈣鈦礦發光元件之有力候選人。
    在各式錫鹵化鈣鈦礦材料中,碘化錫銫和溴化錫銫展現了不亞於鉛鹵化物鈣鈦礦的物理特性,如:優異的對熱穩定性 (thermal stability) 和更高的載子遷移能力(charge carrier mobility)。目前,對於碘化錫銫和溴化錫銫的研究大都著重在電性,對於它們的光學性質的討論仍舊稀少。因此,本論文針對碘化錫銫 (orthorhombic-phase B-γ-CsSnI3) 鈣鈦礦薄膜及溴化錫銫 (cubic-phase α-CsSnBr3) 鈣鈦礦微米結構(方盤及角錐)之材料性質及在一般環境(ambient condition)中的光致發光 (photoluminescence) 特性進行系統化的研究。研究所用的碘化錫銫鈣鈦礦薄膜及溴化錫銫鈣鈦礦微米結構皆透過化學氣相沉積法 (chemical vapor deposition) 製作而成。在第一部分,我們對碘化錫銫鈣鈦礦薄膜進行系統化的材料及光致發光特性分析。所有的光致發光特性量測皆在無封裝狀態下,於大氣環境中完成。使用化學氣相沉積法製成的碘化錫銫鈣鈦礦薄膜在大氣環境中擁有優異且穩定的光致發光表現。在改變激發雷射光強度之光致發光光譜量測中,我們觀察到來自於碘化錫銫鈣鈦礦薄膜的近紅外光雷射。透過不同觀測角度的雷射光譜量測,確認此一雷射為隨機雷射。利用快速傅立葉分析,我們求得此隨機雷射之有效光學共振腔長度。而在不同觀測角度所量測到的隨機雷射,展現出相異的有效光學共振腔長度,再次證明碘化錫銫鈣鈦礦雷射為隨機雷射。
    在第二部分,我們對溴化錫銫鈣鈦礦微米結構(方盤及角錐)的材料特性及一般環境中的光致發光性質進行系統化的研究,並著重在溴化錫銫鈣鈦礦微米結構於高溫環境中的光致發光特性。與第一部分相同,所有的光致發光特性量測皆在無封裝狀態下,於大氣環境中完成。首先,我們針對溴化錫銫鈣鈦礦微米結構在常溫環境之光致發光特性進行分析。此類溴化錫銫鈣鈦礦微米結構於常溫環境展現了非凡且穩定的光致發光特性。無論是利用短波長(532奈米)或是長波長(940奈米)雷射光源進行激發,溴化錫銫鈣鈦礦微米結構皆展現優異的發光表現。同時,我們於溴化錫銫鈣鈦礦微米方盤中觀測到耳語迴廊 (whispering gallery mode) 共振膜態,且在溴化錫銫鈣鈦礦微米角錐中量測到放大自發輻射 (amplified spontaneous emission) 現象。這些結果證明溴化錫銫鈣鈦礦微米結構擁有優異的光學特性。接著,我們對溴化錫銫鈣鈦礦微米結構進行加熱,並觀察其光致發光的表現。由於熱效應的緣故,溴化錫銫鈣鈦礦微米方盤和角錐之光致發光強度皆隨著溫度上升而下降。同時,發光波長則隨著溫度上升,呈現明顯的藍移現象,此一現象源自於emphanisis的特殊現象。隨著溫度遞增,光致發光的線寬 (spectral linewidth) 也逐步變寬,此現象歸因於劇烈的電子與聲子之交互作用 (electron−longitudinal optical (LO) phonon interaction)。利用阿瑞尼士方程式 (Arrhenius equation),我們估算出一活化能,用以評估由熱效應引發的非輻射複合的現象。溴化錫銫鈣鈦礦微米方盤和角錐之活化能皆超過310毫電子伏特 (meV),大於在溴化鉛銫所觀測到的數值,證明了溴化錫銫鈣鈦礦在高溫環境中擁有優於鉛鹵化物鈣鈦礦的發光特性。

    In recent years, Pb-based halide perovskites with high defect tolerance have shown favorable physical properties, such as high photoluminescence quantum yields (PLQYs), high exciton binding energy, and wavelength-tunable emission in entire visible-light region, etc. With these properties, they have been extensively applied in luminescent devices. Regrettably, the toxicity of Pb2+ results in a great concern that could hinder the developments of Pb-based halide perovskite luminescent devices, such as light-emitting diodes (LEDs) and lasers. As a result, it is important to find eco-friendly and low-toxicity replacements for Pb2+. Over the past few years, Sn2+ has been reported to be substituted for Pb2+. The crystalline structure of Sn-based halide perovskites is similar to that of Pb analogues because Sn and Pb are in the same main group. Moreover, Sn-based halide perovskites present the physical properties similar to that of Pb-based ones. It is worth mentioning that Sn-based halide perovskites have the environmentally friendly degradation, SnO2, which makes them regarded as “green material”. Therefore, Sn2+ is a suitable candidate for the replacement for Pb2+.
    Among various Sn-based halide perovskites, CsSnI3 and CsSnBr3 show impressive physical properties comparable to or sometimes even superior to those observed in Pb analogues, such as better thermal stability and higher charge carrier mobilities. So far, most studies in CsSnI3 and CsSnBr3 focus on their electrical properties. Their optical properties have not been fully understood yet. Therefore, the aim of this thesis is to explore the photoluminescence (PL) properties of orthorhombic-phase B-γ-CsSnI3 films and cubic-phase α-CsSnBr3 microsqaures and micropyramids under ambient condition.
    Both B-γ-CsSnI3 films and α-CsSnBr3 microstructures reported in this thesis are synthesized on mica substrates through chemical vapor deposition (CVD). In the first part, the systematic PL experiments are performed to investigate the PL characteristics of B-γ-CsSnI3 films. The B-γ-CsSnI3 films exhibit decent PL performances under ambient condition without encapsulation. In the optical absorption and PL measurements, the band-edge absorption of B-γ-CsSnI3 film at 950 nm (~1.3 eV) is compatible with the PL emission, which suggests a band-to-band luminescence. Moreover, the B-γ-CsSnI3 film exhibits the stable PL emission for 70 min. In the fluence-dependent PL measurements, as excitation fluence was above 18 mJ/cm2, the near-infrared lasing behavior from the film is observed under ambient condition. The B-γ-CsSnI3 laser exhibits the quality factor (Q) over 3000. By means of the lasing measurements of B-γ-CsSnI3 film in various detected configurations, the B-γ-CsSnI3 laser is classified as a random laser. The effective optical length for B-γ-CsSnI3 random lasers is estimated through the Fourier-transform analysis. Furthermore, the estimated effective optical cavity lengths observed in various detected configurations are different, which is the typical feature of random lasers.
    In the second part, the thermal PL quenching behavior of α-CsSnBr3 microsquares and micropyramids upon temperature increase are investigated systematically besides the typical PL properties. Both microstructures show impressive PL performances under ambient condition without encapsulation. In optical absorption and PL measurements, the PL emission of α-CsSnBr3 microsquare at 688.3 nm is in agreement with the band-edge absorption, which indicates a band-to-band luminescence. Furthermore, both microstructures show the stable PL emission for 480 min. In two-photon excited PL experiments, whispering gallery modes (WGMs) due to constructive interference are formed in the microsquares, and amplified spontaneous emission (ASE) takes place in the micropyramids. The high-temperature-dependent PL measurements help to understand the mechanism of reversible PL losses upon temperature increase for both α-CsSnBr3 microstructures. Monotonic blue shifts observed in PL emission with increasing temperature indicates a band-gap widening correlated with an emphanisis effect which results from the Sn2+ off-centering displacement. The analysis of spectral linewidth at elevated temperature for both samples reveals a linewidth broadening because of the dominant electron−longitudinal optical (LO) phonon interaction. Through the Arrhenius equation, the activation energy of thermally assisted nonradiative recombination for α-CsSnBr3 microsquares and micropyramids are estimated. Both microstructures possess the activation energy over 310 meV which is greater than CsPbBr3 (246 meV) in previous study. These results reveal that the PL properties of α-CsSnBr3 at high temperature are superior to that of Pb-based halide perovskites.

    摘要 I Abstract IV Acknowledgements VII Contents VIII List of Tables X List of Figures XI Chapter 1. Introduction 1 1.1. Introduction of Halide Perovskites 1 1.2. Introduction of CsSnI3 and CsSnBr3 Perovskites 9 1.3. Random Lasers 17 1.4. Whispering Gallery Modes in Optical Microcavities 34 1.5. Amplified Spontaneous Emission 61 1.6. Thermal Photoluminescence Quenching 63 Chapter 2 Experimental Setups 69 2.1. Experimental Setups for B-γ-CsSnI3 Films 69 2.2. Experimental Setups for α-CsSnBr3 Microsquares and Micropyramids 71 Chapter 3 Room-Temperature Near-infrared Random Lasing Within B-γ-CsSnI3 Perovskite Films Synthesized via Chemical Vapor Deposition 76 3.1. Material Characteristics of B-γ-CsSnI3 Films Synthesized by CVD 77 3.2. Optical Characteristics of B-γ-CsSnI3 Films Synthesized by CVD 80 3.3. Conclusions 89 Chapter 4. Suppression of Thermal Photoluminescence Quenching of α-CsSnBr3 Microsquare and Micropyramid Cavities Synthesized via Chemical Vapor Deposition 90 4.1. Material Characteristics of CVD-Grown α-CsSnBr3 Microsquares and Micropyramids 91 4.2. Optical Characteristics of CVD-Grown α-CsSnBr3 Microsquares and Micropyramids 95 4.3. Conclusions 120 Chapter 5. Conclusions and future work 121 5.1. Conclusions 121 5.2. Future work 123 References 124 List of Publications 145

    (1) Manser, J. S.; Christians, J. A.; Kamat, P. V., Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chem. Rev., 116 (21), 12956-13008 (2016).
    (2) Quan, L. N.; Rand, B. P.; Friend, R. H.; Mhaisalkar, S. G.; Lee, T. W.; Sargent, E. H., Perovskites for Next-Generation Optical Sources. Chem. Rev., 119 (12), 7444-7477 (2019).
    (3) Jena, A. K.; Kulkarni, A.; Miyasaka, T., Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chem. Rev., 119 (5), 3036-3103 (2019).
    (4) Yan, Y.; Pullerits, T.; Zheng, K.; Liang, Z., Advancing Tin Halide Perovskites: Strategies toward the ASnX3 Paradigm for Efficient and Durable Optoelectronics. ACS Energy Lett., 5 (6), 2052-2086 (2020).
    (5) Mitzi, D. B., Templating and Structural Engineering in Organic–Inorganic Perovskites. J. Chem. Soc.-Dalton Trans. (1), 1-12 (2001).
    (6) Xing, G.; Mathews, N.; Lim, S. S.; Yantara, N.; Liu, X.; Sabba, D.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C., Low-Temperature Solution-Processed Wavelength-Tunable Perovskites for Lasing. Nat. Mater., 13, 476-480 (2014).
    (7) Zhang, Q.; Ha, S. T.; Liu, X.; Sum, T. C.; Xiong, Q., Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nanolasers. Nano Lett., 14 (10), 5995-6001 (2014).
    (8) Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G., Lead-Free Solid-State Organic–Inorganic Halide Perovskite Solar Cells. Nat. Photonics, 8 (6), 489-494 (2014).
    (9) Hong, W. L.; Huang, Y. C.; Chang, C. Y.; Zhang, Z. C.; Tsai, H. R.; Chang, N. Y.; Chao, Y. C., Efficient Low-Temperature Solution-Processed Lead-Free Perovskite Infrared Light-Emitting Diodes. Adv. Mater., 28 (36), 8029-8036 (2016).
    (10) Lai, M. L.; Tay, T. Y. S.; Sadhanala, A.; Dutton, S. E.; Li, G.; Friend, R. H.; Tan, Z. K., Tunable Near-Infrared Luminescence in Tin Halide Perovskite Devices. J. Phys. Chem. Lett., 7 (14), 2653-2658 (2016).
    (11) Hoefler, S. F.; Trimmel, G.; Rath, T., Progress on Lead-Free Metal Halide Perovskites for Photovoltaic Applications: a Review. Mon. Chem., 148 (5), 795-826 (2017).
    (12) Chen, J.; Zhou, Y.; Fu, Y.; Pan, J.; Mohammed, O. F.; Bakr, O. M., Oriented Halide Perovskite Nanostructures and Thin Films for Optoelectronics. Chem. Rev., 121 (20), 12112-12180 (2021).
    (13) Yang, W. F.; Igbari, F.; Lou, Y. H.; Wang, Z. K.; Liao, L. S., Tin Halide Perovskites: Progress and Challenges. Adv. Energy Mater., 10 (13), 1902584 (2020).
    (14) Pauling, L., The Influence of Relative Ionic Sizes on the Properties of Ionic Compounds. J. Am. Chem. Soc., 50 (4), 1036-1045 (1928).
    (15) Pauling, L., Atomic Radii and Interatomic Distances in Metals. J. Am. Chem. Soc., 69 (3), 542-553 (1947).
    (16) Fang, H.; Jena, P., Super-Ion Inspired Colorful Hybrid Perovskite Solar Cells. J. Mater. Chem. A, 4 (13), 4728-4737 (2016).
    (17) Sun, Q.; Yin, W.-J., Thermodynamic Stability Trend of Cubic Perovskites. J. Am. Chem. Soc., 139 (42), 14905-14908 (2017).
    (18) Becker, M.; Klüner, T.; Wark, M., Formation of Hybrid ABX3 Perovskite Compounds for Solar Cell Application: First-Principles Calculations of Effective Ionic Radii and Determination of Tolerance Factors. Dalton Trans., 46 (11), 3500-3509 (2017).
    (19) Goldschmidt, V. M., Die Gesetze der Krystallochemie. Naturwissenschaften, 14 (21), 477-485 (1926).
    (20) Stoumpos, C. C.; Kanatzidis, M. G., The Renaissance of Halide Perovskites and Their Evolution as Emerging Semiconductors. Accounts Chem. Res., 48 (10), 2791-2802 (2015).
    (21) Tai, Q. D.; Tang, K. C.; Yan, F., Recent Progress of Inorganic Perovskite Solar Cells. Energy Environ. Sci., 12 (8), 2375-2405 (2019).
    (22) Yao, H.; Zhou, F.; Li, Z.; Ci, Z.; Ding, L.; Jin, Z., Strategies for Improving the Stability of Tin-Based Perovskite (ASnX3) Solar Cells. Adv. Sci., 7 (10), 1903540 (2020).
    (23) Hao, F.; Stoumpos, C. C.; Guo, P.; Zhou, N.; Marks, T. J.; Chang, R. P. H.; Kanatzidis, M. G., Solvent-Mediated Crystallization of CH3NH3SnI3 Films for Heterojunction Depleted Perovskite Solar Cells. J. Am. Chem. Soc., 137 (35), 11445-11452 (2015).
    (24) Liao, W.; Zhao, D.; Yu, Y.; Grice, C. R.; Wang, C.; Cimaroli, A. J.; Schulz, P.; Meng, W.; Zhu, K.; Xiong, R. G.; Yan, Y., Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%. Adv. Mater., 28 (42), 9333-9340 (2016).
    (25) Zhu, H.; Fu, Y.; Meng, F.; Wu, X.; Gong, Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X. Y., Lead Halide Perovskite Nanowire Lasers with Low Lasing Thresholds and High Quality Factors. Nat. Mater., 14, 636-642 (2015).
    (26) Xing, J.; Liu, X. F.; Zhang, Q.; Ha, S. T.; Yuan, Y. W.; Shen, C.; Sum, T. C.; Xiong, Q., Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers. Nano Lett., 15 (7), 4571-4577 (2015).
    (27) MØLler, C. K., Crystal Structure and Photoconductivity of Cæsium Plumbohalides. Nature, 182 (4647), 1436-1436 (1958).
    (28) Weber, D., CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur / CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure. Z.Naturforsch.(B), 33 (12), 1443-1445 (1978).
    (29) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc., 131 (17), 6050-6051 (2009).
    (30) Ko, H. S.; Lee, J. W.; Park, N. G., 15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3. J. Mater. Chem. A, 3 (16), 8808-8815 (2015).
    (31) Zhang, Y.; Seo, S.; Lim, S. Y.; Kim, Y.; Kim, S.-G.; Lee, D.-K.; Lee, S.-H.; Shin, H.; Cheong, H.; Park, N.-G., Achieving Reproducible and High-Efficiency (>21%) Perovskite Solar Cells with a Presynthesized FAPbI3 Powder. ACS Energy Lett., 5 (2), 360-366 (2020).
    (32) Akin, S.; Akman, E.; Sonmezoglu, S., FAPbI3-Based Perovskite Solar Cells Employing Hexyl-Based Ionic Liquid with an Efficiency Over 20% and Excellent Long-Term Stability. Adv. Funct. Mater., 30 (28), 2002964 (2020).
    (33) Fang, H. H.; Wang, F.; Adjokatse, S.; Zhao, N.; Even, J.; Antonietta Loi, M., Photoexcitation Dynamics in Solution-Processed Formamidinium Lead Iodide Perovskite Thin Films for Solar Cell Applications. Light-Sci. Appl., 5 (4), e16056 (2016).
    (34) Wang, Y.; Dar, M. I.; Ono, L. K.; Zhang, T.; Kan, M.; Li, Y.; Zhang, L.; Wang, X.; Yang, Y.; Gao, X.; Qi, Y.; Grätzel, M.; Zhao, Y., Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies >18%. Science, 365 (6453), 591-595 (2019).
    (35) Pellet, N.; Gao, P.; Gregori, G.; Yang, T. Y.; Nazeeruddin, M. K.; Maier, J.; Grätzel, M., Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting. Angew. Chem.-Int. Edit., 53 (12), 3151-3157 (2014).
    (36) Wang, Z.; Lin, Q.; Chmiel, F. P.; Sakai, N.; Herz, L. M.; Snaith, H. J., Efficient Ambient-Air-Stable Solar Cells With 2D–3D Heterostructured Butylammonium-Caesium-Formamidinium Lead Halide Perovskites. Nat. Energy, 2 (9), 17135 (2017).
    (37) De Wolf, S.; Holovsky, J.; Moon, S. J.; Löper, P.; Niesen, B.; Ledinsky, M.; Haug, F.-J.; Yum, J. H.; Ballif, C., Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. J. Phys. Chem. Lett., 5 (6), 1035-1039 (2014).
    (38) Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J., Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 342 (6156), 341-344 (2013).
    (39) Xing, G.; Mathews, N.; Sun, S.; Lim Swee, S.; Lam Yeng, M.; Grätzel, M.; Mhaisalkar, S.; Sum Tze, C., Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science, 342 (6156), 344-347 (2013).
    (40) Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M., High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites. Adv. Mater., 26 (10), 1584-1589 (2014).
    (41) Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html (accessed July 2021).
    (42) Min, H.; Lee, D. Y.; Kim, J.; Kim, G.; Lee, K. S.; Kim, J.; Paik, M. J.; Kim, Y. K.; Kim, K. S.; Kim, M. G.; Shin, T. J.; Il Seok, S., Perovskite Solar Cells with Atomically Coherent Interlayers on SnO2 Electrodes. Nature, 598 (7881), 444-450 (2021).
    (43) Liu, F.; Zhang, Y.; Ding, C.; Kobayashi, S.; Izuishi, T.; Nakazawa, N.; Toyoda, T.; Ohta, T.; Hayase, S.; Minemoto, T.; Yoshino, K.; Dai, S.; Shen, Q., Highly Luminescent Phase-Stable CsPbI3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield. ACS Nano, 11 (10), 10373-10383 (2017).
    (44) Era, M.; Morimoto, S.; Tsutsui, T.; Saito, S., Organic‐Inorganic Heterostructure Electroluminescent Device Using a Layered Perovskite Semiconductor (C6H5C2H4NH3)2PbI4. Appl. Phys. Lett., 65 (6), 676-678 (1994).
    (45) Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H., Bright Light-Emitting Diodes Based on Organometal Halide Perovskite. Nat. Nanotechnol., 9, 687-692 (2014).
    (46) Cho, H.; Jeong, S. H.; Park, M. H.; Kim, Y. H.; Wolf, C.; Lee, C. L.; Heo Jin, H.; Sadhanala, A.; Myoung, N.; Yoo, S.; Im Sang, H.; Friend Richard, H.; Lee, T. W., Overcoming the Electroluminescence Efficiency Limitations of Perovskite Light-Emitting Diodes. Science, 350 (6265), 1222-1225 (2015).
    (47) Song, J.; Fang, T.; Li, J.; Xu, L.; Zhang, F.; Han, B.; Shan, Q.; Zeng, H., Organic–Inorganic Hybrid Passivation Enables Perovskite QLEDs with an EQE of 16.48%. Adv. Mater., 30 (50), 1805409 (2018).
    (48) Kondo, T.; Azuma, T.; Yuasa, T.; Ito, R., Biexciton Lasing in the Layered Perovskite-Type Material (C6H13NH3)2PbI4. Solid State Commun., 105 (4), 253-255 (1998).
    (49) Dhanker, R.; Brigeman, A. N.; Larsen, A. V.; Stewart, R. J.; Asbury, J. B.; Giebink, N. C., Random Lasing in Organo-Lead Halide Perovskite Microcrystal Networks. Appl. Phys. Lett., 105 (15), 151112 (2014).
    (50) Wang, Y. C.; Li, H.; Hong, Y. H.; Hong, K. B.; Chen, F. C.; Hsu, C. H.; Lee, R. K.; Conti, C.; Kao, T. S.; Lu, T. C., Flexible Organometal–Halide Perovskite Lasers for Speckle Reduction in Imaging Projection. ACS Nano, 13 (5), 5421-5429 (2019).
    (51) Liu, Y.; Gao, W.; Ran, C.; Dong, H.; Sun, N.; Ran, X.; Xia, Y.; Song, L.; Chen, Y.; Huang, W., All-inorganic Sn-based Perovskite Solar Cells: Status, Challenges, and Perspectives. ChemSusChem, 13 (24), 6477-6497 (2020).
    (52) Barrett, J.; Bird, S. R. A.; Donaldson, J. D.; Silver, J., The Mössbauer Effect in Tin(II) Compounds. Part XI. The Spectra of Cubic Trihalogenostannates(II). J. Chem. Soc. (A): Inorg. Phys. Theor. (0), 3105-3108 (1971).
    (53) Scaife, D. E.; Weller, P. F.; Fisher, W. G., Crystal Preparation and Properties of Cesium Tin(II) Trihalides. J. Solid State Chem., 9 (3), 308-314 (1974).
    (54) Yamada, K.; Nose, S.; Umehara, T.; Okuda, T.; Ichiba, S., 81Br NQR and 119Sn Mössbauer Study for MSnBr3 (M=Cs and CH3NH3). Bull. Chem. Soc. Jpn., 61 (12), 4265-4268 (1988).
    (55) Yamada, K.; Matsui, T.; Tsuritani, T.; Okuda, T.; Ichiba, S., 127I-NQR, 119Sn Mössbauer Effect, and Electrical Conductivity of MSnI3 (M = K, NH4 , Rb, Cs, and CH3NH3 ). Z.Naturforsch.(A), 45 (3-4), 307-312 (1990).
    (56) Yamada, K.; Kuranaga, Y.; Ueda, K.; Goto, S.; Okuda, T.; Furukawa, Y., Phase Transition and Electric Conductivity of ASnCl3 (A = Cs and CH3NH3). Bull. Chem. Soc. Jpn., 71 (1), 127-134 (1998).
    (57) Mitzi, D. B.; Feild, C. A.; Harrison, W. T. A.; Guloy, A. M., Conducting Tin Halides with a Layered Organic-Based Perovskite Structure. Nature, 369 (6480), 467-469 (1994).
    (58) Mitzi, D. B.; Wang, S.; Feild, C. A.; Chess, C. A.; Guloy, A. M., Conducting Layered Organic-Inorganic Halides Containing 〈110〉-Oriented Perovskite Sheets. Science, 267 (5203), 1473-1476 (1995).
    (59) Mitzi, D. B.; Dimitrakopoulos, C. D.; Kosbar, L. L., Structurally Tailored Organic−Inorganic Perovskites:  Optical Properties and Solution-Processed Channel Materials for Thin-Film Transistors. Chem. Mat., 13 (10), 3728-3740 (2001).
    (60) Takahashi, Y.; Obara, R.; Lin, Z. Z.; Takahashi, Y.; Naito, T.; Inabe, T.; Ishibashi, S.; Terakura, K., Charge-Transport in Tin-Iodide Perovskite CH3NH3SnI3: Origin of High Conductivity. Dalton Trans., 40 (20), 5563-5568 (2011).
    (61) Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.-A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B.; Petrozza, A.; Herz, L. M.; Snaith, H. J., Lead-Free Organic–Inorganic Tin Halide Perovskites for Photovoltaic Applications. Energy Environ. Sci., 7 (9), 3061-3068 (2014).
    (62) Heo, J. H.; Kim, J.; Kim, H.; Moon, S. H.; Im, S. H.; Hong, K.-H., Roles of SnX2 (X = F, Cl, Br) Additives in Tin-Based Halide Perovskites toward Highly Efficient and Stable Lead-Free Perovskite Solar Cells. J. Phys. Chem. Lett., 9 (20), 6024-6031 (2018).
    (63) Takahashi, Y.; Hasegawa, H.; Takahashi, Y.; Inabe, T., Hall mobility in tin iodide perovskite CH3NH3SnI3: Evidence for a doped semiconductor. J. Solid State Chem., 205, 39-43 (2013).
    (64) Lee, B.; Stoumpos, C. C.; Zhou, N.; Hao, F.; Malliakas, C.; Yeh, C. Y.; Marks, T. J.; Kanatzidis, M. G.; Chang, R. P. H., Air-Stable Molecular Semiconducting Iodosalts for Solar Cell Applications: Cs2SnI6 as a Hole Conductor. J. Am. Chem. Soc., 136 (43), 15379-15385 (2014).
    (65) Kagan, C. R.; Mitzi, D. B.; Dimitrakopoulos, C. D., Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors. Science, 286 (5441), 945-947 (1999).
    (66) Chung, I.; Lee, B.; He, J.; Chang, R. P. H.; Kanatzidis, M. G., All-Solid-State Dye-Sensitized Solar Cells with High Efficiency. Nature, 485 (7399), 486-489 (2012).
    (67) Chen, Z.; Wang, J. J.; Ren, Y.; Yu, C.; Shum, K., Schottky Solar Cells Based on CsSnI3 Thin-Films. Appl. Phys. Lett., 101 (9), 093901 (2012).
    (68) Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G., Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorg. Chem., 52 (15), 9019-9038 (2013).
    (69) Zhang, X.; Wang, C.; Zhang, Y.; Zhang, X.; Wang, S.; Lu, M.; Cui, H.; Kershaw, S. V.; Yu, W. W.; Rogach, A. L., Bright Orange Electroluminescence from Lead-Free Two-Dimensional Perovskites. ACS Energy Lett., 4 (1), 242-248 (2019).
    (70) Wang, A.; Guo, Y.; Zhou, Z.; Niu, X.; Wang, Y.; Muhammad, F.; Li, H.; Zhang, T.; Wang, J.; Nie, S.; Deng, Z., Aqueous Acid-Based Synthesis of Lead-Free Tin Halide Perovskites with Near-Unity Photoluminescence Quantum Efficiency. Chem. Sci., 10 (17), 4573-4579 (2019).
    (71) Xing, G.; Kumar, M. H.; Chong, W. K.; Liu, X.; Cai, Y.; Ding, H.; Asta, M.; Grätzel, M.; Mhaisalkar, S.; Mathews, N.; Sum, T. C., Solution-Processed Tin-Based Perovskite for Near-Infrared Lasing. Adv. Mater., 28 (37), 8191-8196 (2016).
    (72) Chen, L. J.; Dai, J. H.; Lin, J. D.; Mo, T. S.; Lin, H. P.; Yeh, H. C.; Chuang, Y. C.; Jiang, S. A.; Lee, C. R., Wavelength-Tunable and Highly Stable Perovskite-Quantum-Dot-Doped Lasers with Liquid Crystal Lasing Cavities. ACS Appl. Mater. Interfaces, 10 (39), 33307-33315 (2018).
    (73) Yamada, K.; Funabiki, S.; Horimoto, H.; Matsui, T.; Okuda, T.; Ichiba, S., Structural Phase Transitions of the Polymorphs of CsSnI3 by Means of Rietveld Analysis of the X-Ray Diffraction. Chem. Lett., 20 (5), 801-804 (1991).
    (74) Chung, I.; Song, J. H.; Im, J.; Androulakis, J.; Malliakas, C. D.; Li, H.; Freeman, A. J.; Kenney, J. T.; Kanatzidis, M. G., CsSnI3: Semiconductor or Metal? High Electrical Conductivity and Strong Near-Infrared Photoluminescence from a Single Material. High Hole Mobility and Phase-Transitions. J. Am. Chem. Soc., 134 (20), 8579-8587 (2012).
    (75) Kontos, A. G.; Kaltzoglou, A.; Siranidi, E.; Palles, D.; Angeli, G. K.; Arfanis, M. K.; Psycharis, V.; Raptis, Y. S.; Kamitsos, E. I.; Trikalitis, P. N.; Stoumpos, C. C.; Kanatzidis, M. G.; Falaras, P., Structural Stability, Vibrational Properties, and Photoluminescence in CsSnI3 Perovskite upon the Addition of SnF2. Inorg. Chem., 56 (1), 84-91 (2017).
    (76) Yamada, K.; Tsuritani, T.; Okuda, T.; Ichiba, S., Structure and Bonding of Two Modifications of CsSnI3 by Means of Powder X-Ray Diffraction, 127I NQR, and DTA. Chem. Lett., 18 (8), 1325-1328 (1989).
    (77) Kontos, A. G.; Kaltzoglou, A.; Arfanis, M. K.; McCall, K. M.; Stoumpos, C. C.; Wessels, B. W.; Falaras, P.; Kanatzidis, M. G., Dynamic Disorder, Band Gap Widening, and Persistent Near-IR Photoluminescence up to at Least 523 K in ASnI3 Perovskites (A = Cs+, CH3NH3+ and NH2–CH═NH2+). J. Phys. Chem. C, 122 (46), 26353-26361 (2018).
    (78) Fabini, D. H.; Laurita, G.; Bechtel, J. S.; Stoumpos, C. C.; Evans, H. A.; Kontos, A. G.; Raptis, Y. S.; Falaras, P.; Van der Ven, A.; Kanatzidis, M. G.; Seshadri, R., Dynamic Stereochemical Activity of the Sn2+ Lone Pair in Perovskite CsSnBr3. J. Am. Chem. Soc., 138 (36), 11820-11832 (2016).
    (79) Snyder, G. J.; Toberer, E. S., Complex Thermoelectric Materials. Nat. Mater., 7 (2), 105-114 (2008).
    (80) Zhu, T.; Liu, Y.; Fu, C.; Heremans, J. P.; Snyder, J. G.; Zhao, X., Compromise and Synergy in High-Efficiency Thermoelectric Materials. Adv. Mater., 29 (14), 1605884 (2017).
    (81) Xie, H.; Hao, S.; Bao, J.; Slade, T. J.; Snyder, G. J.; Wolverton, C.; Kanatzidis, M. G., All-Inorganic Halide Perovskites as Potential Thermoelectric Materials: Dynamic Cation Off-Centering Induces Ultralow Thermal Conductivity. J. Am. Chem. Soc., 142 (20), 9553-9563 (2020).
    (82) Lee, W.; Li, H.; Wong, A. B.; Zhang, D.; Lai, M.; Yu, Y.; Kong, Q.; Lin, E.; Urban, J. J.; Grossman, J. C.; Yang, P., Ultralow Thermal Conductivity in All-Inorganic Halide Perovskites. Proc. Natl. Acad. Sci., 114 (33), 8693-8697 (2017).
    (83) Huang, L. Y.; Lambrecht, W. R. L., Lattice Dynamics in Perovskite Halides CsSnX3 with X= I, Br, Cl. Phys. Rev. B, 90 (19), 195201 (2014).
    (84) Wang, A.; Guo, Y.; Muhammad, F.; Deng, Z., Controlled Synthesis of Lead-Free Cesium Tin Halide Perovskite Cubic Nanocages with High Stability. Chem. Mat., 29 (15), 6493-6501 (2017).
    (85) Chen, J.; Luo, Z.; Fu, Y.; Wang, X.; Czech, K. J.; Shen, S.; Guo, L.; Wright, J. C.; Pan, A.; Jin, S., Tin(IV)-Tolerant Vapor-Phase Growth and Photophysical Properties of Aligned Cesium Tin Halide Perovskite (CsSnX3; X = Br, I) Nanowires. ACS Energy Lett., 4 (5), 1045-1052 (2019).
    (86) Li, B.; Long, R.; Xia, Y.; Mi, Q., All-Inorganic Perovskite CsSnBr3 as a Thermally Stable, Free-Carrier Semiconductor. Angew. Chem.-Int. Edit., 57 (40), 13154-13158 (2018).
    (87) Gupta, S.; Bendikov, T.; Hodes, G.; Cahen, D., CsSnBr3, A Lead-Free Halide Perovskite for Long-Term Solar Cell Application: Insights on SnF2 Addition. ACS Energy Lett., 1 (5), 1028-1033 (2016).
    (88) Moghe, D.; Wang, L.; Traverse, C. J.; Redoute, A.; Sponseller, M.; Brown, P. R.; Bulović, V.; Lunt, R. R., All Vapor-Deposited Lead-Free Doped CsSnBr3 Planar Solar Cells. Nano Energy, 28, 469-474 (2016).
    (89) Song, T. B.; Yokoyama, T.; Stoumpos, C. C.; Logsdon, J.; Cao, D. H.; Wasielewski, M. R.; Aramaki, S.; Kanatzidis, M. G., Importance of Reducing Vapor Atmosphere in the Fabrication of Tin-Based Perovskite Solar Cells. J. Am. Chem. Soc., 139 (2), 836-842 (2017).
    (90) Li, B.; Long, R.; Yao, Q.; Zhu, Z.; Mi, Q., Band Alignment Boosts Charge-Carrier Collection in Sn-based Perovskite over Pb Counterparts. J. Phys. Chem. Lett., 10 (13), 3699-3703 (2019).
    (91) Jellicoe, T. C.; Richter, J. M.; Glass, H. F. J.; Tabachnyk, M.; Brady, R.; Dutton, S. E.; Rao, A.; Friend, R. H.; Credgington, D.; Greenham, N. C.; Böhm, M. L., Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Nanocrystals. J. Am. Chem. Soc., 138 (9), 2941-2944 (2016).
    (92) Mahesh, K. P. O.; Chang, C. Y.; Hong, W. L.; Wen, T. H.; Lo, P. H.; Chiu, H. Z.; Hsu, C. L.; Horng, S. F.; Chao, Y. C., Lead-Free Cesium Tin Halide Nanocrystals for Light-Emitting Diodes and Color Down Conversion. RSC Adv., 10 (61), 37161-37167 (2020).
    (93) Liu, D.; Liu, J.; Zhang, K.; Wang, P.; Miao, C.; Sun, J.; Zhang, B.; He, J.; Hao, X.; Yang, Z. X., Giant Nonlinear Optical Response of Lead-Free All-Inorganic CsSnBr3 Nanoplates. J. Phys. Chem. C, 125 (1), 803-811 (2021).
    (94) Mujumdar, S.; Türck, V.; Torre, R.; Wiersma, D. S., Chaotic Behavior of a Random Laser with Static Disorder. Phys. Rev. A, 76 (3), 033807 (2007).
    (95) Cao, H.; Zhao, Y. G.; Ho, S. T.; Seelig, E. W.; Wang, Q. H.; Chang, R. P. H., Random Laser Action in Semiconductor Powder. Phys. Rev. Lett., 82 (11), 2278-2281 (1999).
    (96) Wiersma, D. S., The Physics and Applications of Random lasers. Nat. Phys., 4 (5), 359-367 (2008).
    (97) Wiersma, D., The Smallest Random Laser. Nature, 406 (6792), 133-135 (2000).
    (98) Wiersma, D. S.; van Albada, M. P.; Lagendijk, A., Random Laser? Nature, 373 (6511), 203-204 (1995).
    (99) Wiersma, D. S.; Bartolini, P.; Lagendijk, A.; Righini, R., Localization of Light in a Disordered Medium. Nature, 390 (6661), 671-673 (1997).
    (100) Segev, M.; Silberberg, Y.; Christodoulides, D. N., Anderson Localization of Light. Nat. Photonics, 7 (3), 197-204 (2013).
    (101) Anderson, P. W., Absence of Diffusion in Certain Random Lattices. Phys. Rev., 109 (5), 1492-1505 (1958).
    (102) Cao, H.; Xu, J. Y.; Chang, S. H.; Ho, S. T., Transition from Amplified Spontaneous Emission to Laser Action in Strongly Scattering Media. Phys. Rev. E, 61 (2), 1985-1989 (2000).
    (103) Lepri, S.; Cavalieri, S.; Oppo, G.-L.; Wiersma, D. S., Statistical Regimes of Random Laser Fluctuations. Phys. Rev. A, 75 (6), 063820 (2007).
    (104) Letokhov, V. S., Generation of Light by a Scattering Medium with Negative Resonance Absorption. Sov. Phys. JETP-USSR, 26 (4), 835-+ (1968).
    (105) Gouedard, C.; Husson, D.; Sauteret, C.; Auzel, F.; Migus, A., Generation of Spatially Incoherent Short Pulses in Laser-Pumped Neodymium Stoichiometric Crystals and Powders. J. Opt. Soc. Am. B, 10 (12), 2358-2363 (1993).
    (106) Cao, H., Lasing in Random Media. Waves Random Media, 13 (3), R1-R39 (2003).
    (107) Strangi, G.; Ferjani, S.; Barna, V.; De Luca, A.; Versace, C.; Scaramuzza, N.; Bartolino, R., Random Lasing and Weak Localization of Light in Dye-Doped Nematic Liquid Crystals. Opt. Express, 14 (17), 7737-7744 (2006).
    (108) Sun, T. M.; Wang, C. S.; Liao, C. S.; Lin, S. Y.; Perumal, P.; Chiang, C. W.; Chen, Y. F., Stretchable Random Lasers with Tunable Coherent Loops. ACS Nano, 9 (12), 12436-12441 (2015).
    (109) Maini, A. K., Laser Characteristics. In Lasers and Optoelectronics, Wiley: pp 34-63 (2013).
    (110) Saleh, B. E. A.; Teich, M. C., Statistical Optics. In Fundamentals of Photonics, Third ed.; Wiley: pp 473-513 (2019).
    (111) Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V., Low-Threshold Amplified Spontaneous Emission and Lasing from Colloidal Nanocrystals of Caesium Lead Halide Perovskites. Nat. Commun., 6 (1), 8056 (2015).
    (112) Shi, Z. F.; Sun, X. G.; Wu, D.; Xu, T. T.; Tian, Y. T.; Zhang, Y. T.; Li, X. J.; Du, G. T., Near-Infrared Random Lasing Realized in a Perovskite CH3NH3PbI3 Thin Film. J. Mater. Chem. C, 4 (36), 8373-8379 (2016).
    (113) Ren, Y.; Zhu, H.; Wu, Y.; Lou, G.; Liang, Y.; Li, S.; Su, S.; Gui, X.; Qiu, Z.; Tang, Z., Ultraviolet Random Laser Based on a Single GaN Microwire. ACS Photonics, 5 (6), 2503-2508 (2018).
    (114) Cao, H., Random Lasers: Development, Features and Applications. Opt. Photon. News, 16 (1), 24-29 (2005).
    (115) He, L.; Özdemir, Ş. K.; Yang, L., Whispering Gallery Microcavity Lasers. Laser Photon. Rev., 7 (1), 60-82 (2013).
    (116) Chang, T. C.; Hong, K. B.; Lai, Y. Y.; Chou, Y. H.; Wang, S. C.; Lu, T. C., ZnO-Based Microcavities Sculpted by Focus Ion Beam Milling. Nanoscale Res. Lett., 11 (1), 319 (2016).
    (117) Reynolds, T.; Riesen, N.; Meldrum, A.; Fan, X.; Hall, J. M. M.; Monro, T. M.; François, A., Fluorescent and Lasing Whispering Gallery Mode Microresonators for Sensing Applications. Laser Photon. Rev., 11 (2), 1600265 (2017).
    (118) Purcell, E. M., Spontaneous Emission Probabilities at Radio Frequencies. Phys. Rev., 69 (11-1), 681-681 (1946).
    (119) Özdemir, Ş. K.; Zhu, J.; He, L.; Yang, L., Estimation of Purcell Factor from Mode-Splitting Spectra in an Optical Microcavity. Phys. Rev. A, 83 (3), 033817 (2011).
    (120) Pelton, M.; Vukovic, J.; Solomon, G. S.; Scherer, A.; Yamamoto, Y., Three-Dimensionally Confined Modes in Micropost Microcavities: Quality Factors and Purcell Factors. IEEE J. Quantum Electron., 38 (2), 170-177 (2002).
    (121) Lin, H. B.; Huston, A. L.; Justus, B. L.; Campillo, A. J., Some Characteristics of a Droplet Whispering-Gallery-Mode Laser. Opt. Lett., 11 (10), 614-616 (1986).
    (122) Sandoghdar, V.; Treussart, F.; Hare, J.; Lefèvre-Seguin, V.; Raimond, J. M.; Haroche, S., Very Low Threshold Whispering-Gallery-Mode Microsphere Laser. Phys. Rev. A, 54 (3), R1777-R1780 (1996).
    (123) Tang, B.; Dong, H.; Sun, L.; Zheng, W.; Wang, Q.; Sun, F.; Jiang, X.; Pan, A.; Zhang, L., Single-Mode Lasers Based on Cesium Lead Halide Perovskite Submicron Spheres. ACS Nano, 11 (11), 10681-10688 (2017).
    (124) Du, W.; Zhang, S.; Wu, Z.; Shang, Q.; Mi, Y.; Chen, J.; Qin, C.; Qiu, X.; Zhang, Q.; Liu, X., Unveiling Lasing Mechanism in CsPbBr3 Microsphere Cavities. Nanoscale, 11 (7), 3145-3153 (2019).
    (125) Wei, Q.; Du, B.; Wu, B.; Guo, J.; Li, M. j.; Fu, J.; Zhang, Z.; Yu, J.; Hou, T.; Xing, G.; Sum, T. C.; Huang, W., Two-Photon Optical Properties in Individual Organic–Inorganic Perovskite Microplates. Adv. Opt. Mater., 5 (24), 1700809 (2017).
    (126) Zhou, B.; Jiang, M.; Dong, H.; Zheng, W.; Huang, Y.; Han, J.; Pan, A.; Zhang, L., High-Temperature Upconverted Single-Mode Lasing in 3D Fully Inorganic Perovskite Microcubic Cavity. ACS Photonics, 6 (3), 793-801 (2019).
    (127) McCall, S. L.; Levi, A. F. J.; Slusher, R. E.; Pearton, S. J.; Logan, R. A., Whispering‐Gallery Mode Microdisk Lasers. Appl. Phys. Lett., 60 (3), 289-291 (1992).
    (128) Knight, J. C.; Driver, H. S. T.; Hutcheon, R. J.; Robertson, G. N., Core-Resonance Capillary-Fiber Whispering-Gallery-Mode Laser. Opt. Lett., 17 (18), 1280-1282 (1992).
    (129) Lissillour, F.; Messager, D.; Stéphan, G.; Féron, P., Whispering-Gallery-Mode Laser at 1.56  μm Excited by a Fiber Taper. Opt. Lett., 26 (14), 1051-1053 (2001).
    (130) Collodo, M. C.; Sedlmeir, F.; Sprenger, B.; Svitlov, S.; Wang, L. J.; Schwefel, H. G. L., Sub-kHz Lasing of a CaF2 Whispering Gallery Mode Resonator Stabilized Fiber Ring Laser. Opt. Express, 22 (16), 19277-19283 (2014).
    (131) Lang, R.; Kobayashi, K., External Optical Feedback Effects on Semiconductor Injection Laser Properties. IEEE J. Quantum Electron., 16 (3), 347-355 (1980).
    (132) Harayama, T.; Shinohara, S., Two-Dimensional Microcavity Lasers. Laser Photon. Rev., 5 (2), 247-271 (2011).
    (133) Cui, J. M.; Dong, C. H.; Zou, C. L.; Sun, F. W.; Xiao, Y. F.; Han, Z. F.; Guo, G. C., Controlling Deformation in a High Quality Factor Silica Microsphere toward Single Directional Emission. Appl. Opt., 52 (2), 298-301 (2013).
    (134) Inan, U. S.; Inan, A. S., Reflection, Transmission, and Refraction of Waves at Planar Interfaces. In Electromagnetic Waves, Prentice Hall: pp 120-248 (2000).
    (135) Cho, C.; Palatnik, A.; Sudzius, M.; Grodofzig, R.; Nehm, F.; Leo, K., Controlling and Optimizing Amplified Spontaneous Emission in Perovskites. ACS Appl. Mater. Interfaces, 12 (31), 35242-35249 (2020).
    (136) Liu, M.; Wan, Q.; Wang, H.; Carulli, F.; Sun, X.; Zheng, W.; Kong, L.; Zhang, Q.; Zhang, C.; Zhang, Q.; Brovelli, S.; Li, L., Suppression of Temperature Quenching in Perovskite Nanocrystals for Efficient and Thermally Stable Light-Emitting Diodes. Nat. Photonics, 15 (5), 379-385 (2021).
    (137) Zhao, Y.; Riemersma, C.; Pietra, F.; Koole, R.; de Mello Donegá, C.; Meijerink, A., High-Temperature Luminescence Quenching of Colloidal Quantum Dots. ACS Nano, 6 (10), 9058-9067 (2012).
    (138) Lin, Y. C.; Bettinelli, M.; Karlsson, M., Unraveling the Mechanisms of Thermal Quenching of Luminescence in Ce3+-Doped Garnet Phosphors. Chem. Mat., 31 (11), 3851-3862 (2019).
    (139) Amachraa, M.; Wang, Z.; Chen, C.; Hariyani, S.; Tang, H.; Brgoch, J.; Ong, S. P., Predicting Thermal Quenching in Inorganic Phosphors. Chem. Mat., 32 (14), 6256-6265 (2020).
    (140) Wang, Y.; Chen, B.; Wang, F., Overcoming Thermal Quenching in Upconversion Nanoparticles. Nanoscale, 13 (6), 3454-3462 (2021).
    (141) Zeev, B., Radiative, Nonradiative, and Mixed-Decay Transitions of Rare-Earth Ions in Dielectric Media. Opt. Eng., 49 (9), 1-19 (2010).
    (142) Shirakov, A.; Burshtein, Z.; Katzir, A.; Frumker, E.; Ishaaya, A. A., Competing Radiative and Nonradiative Decay of Embedded Ions States in Dielectric Crystals: Theory, and Application to Co2+:AgCl0.5Br0.5. Opt. Express, 26 (9), 11694-11707 (2018).
    (143) van Dijk, J. M. F.; Schuurmans, M. F. H., On the Nonradiative and Radiative Decay Rates and a Modified Exponential Energy Gap Law for 4f–4f Transitions in Rare‐Earth Ions. J. Chem. Phys., 78 (9), 5317-5323 (1983).
    (144) Wilson, J. S.; Chawdhury, N.; Al-Mandhary, M. R. A.; Younus, M.; Khan, M. S.; Raithby, P. R.; Köhler, A.; Friend, R. H., The Energy Gap Law for Triplet States in Pt-Containing Conjugated Polymers and Monomers. J. Am. Chem. Soc., 123 (38), 9412-9417 (2001).
    (145) Tilstra, L. G.; Arts, A. F. M.; de Wijn, H. W., Optically Excited Ruby as a Saser: Experiment and Theory. Phys. Rev. B, 76 (2), 024302 (2007).
    (146) Zhang, Q.; Su, R.; Liu, X.; Xing, J.; Sum, T. C.; Xiong, Q., High-Quality Whispering-Gallery-Mode Lasing from Cesium Lead Halide Perovskite Nanoplatelets. Adv. Funct. Mater., 26 (34), 6238-6245 (2016).
    (147) Chen, J.; Fu, Y.; Samad, L.; Dang, L.; Zhao, Y.; Shen, S.; Guo, L.; Jin, S., Vapor-Phase Epitaxial Growth of Aligned Nanowire Networks of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). Nano Lett., 17 (1), 460-466 (2017).
    (148) Lan, S.; Li, W.; Wang, S.; Li, J.; Wang, J.; Wang, H.; Luo, H.; Li, D., Vapor-Phase Growth of CsPbBr3 Microstructures for Highly Efficient Pure Green Light Emission. Adv. Opt. Mater., 7 (2), 1801336 (2019).
    (149) Liu, Z.; Li, Y.; Guan, X.; Mi, Y.; Al-Hussain, A.; Ha, S. T.; Chiu, M. H.; Ma, C.; Amer, M. R.; Li, L. J.; Liu, J.; Xiong, Q.; Wang, J.; Liu, X.; Wu, T., One-Step Vapor-Phase Synthesis and Quantum-Confined Exciton in Single-Crystal Platelets of Hybrid Halide Perovskites. J. Phys. Chem. Lett., 10 (10), 2363-2371 (2019).
    (150) Wu, Z. Y.; Jian, B. L.; Hsu, H. C., Photoluminescence Characterizations of Highly Ambient-Air-Stable CH3NH3PbI3/PbI2 Heterostructure. Opt. Mater. Express, 9 (4), 1882-1892 (2019).
    (151) Zhou, H.; Yuan, S.; Wang, X.; Xu, T.; Wang, X.; Li, H.; Zheng, W.; Fan, P.; Li, Y.; Sun, L.; Pan, A., Vapor Growth and Tunable Lasing of Band Gap Engineered Cesium Lead Halide Perovskite Micro/Nanorods with Triangular Cross Section. ACS Nano, 11 (2), 1189-1195 (2017).
    (152) Han, M.; Sun, J.; Peng, M.; Han, N.; Chen, Z.; Liu, D.; Guo, Y.; Zhao, S.; Shan, C.; Xu, T.; Hao, X.; Hu, W.; Yang, Z. X., Controllable Growth of Lead-Free All-Inorganic Perovskite Nanowire Array with Fast and Stable Near-Infrared Photodetection. J. Phys. Chem. C, 123 (28), 17566-17573 (2019).
    (153) Qiu, X.; Cao, B.; Yuan, S.; Chen, X.; Qiu, Z.; Jiang, Y.; Ye, Q.; Wang, H.; Zeng, H.; Liu, J.; Kanatzidis, M. G., From Unstable CsSnI3 to Air-Stable Cs2SnI6: A Lead-Free Perovskite Solar Cell Light Absorber with Bandgap of 1.48eV and High Absorption Coefficient. Sol. Energy Mater. Sol. Cells, 159, 227-234 (2017).
    (154) Li, B.; Chang, B.; Pan, L.; Li, Z.; Fu, L.; He, Z.; Yin, L., Tin-Based Defects and Passivation Strategies in Tin-Related Perovskite Solar Cells. ACS Energy Lett., 5 (12), 3752-3772 (2020).
    (155) Schmidt, T.; Lischka, K.; Zulehner, W., Excitation-Power Dependence of the Near-Band-Edge Photoluminescence of Semiconductors. Phys. Rev. B, 45 (16), 8989-8994 (1992).
    (156) He, H.; Yu, Q.; Li, H.; Li, J.; Si, J.; Jin, Y.; Wang, N.; Wang, J.; He, J.; Wang, X.; Zhang, Y.; Ye, Z., Exciton Localization in Solution-Processed Organolead Trihalide Perovskites. Nat. Commun., 7, 10896 (2016).
    (157) Shibata, H.; Sakai, M.; Yamada, A.; Matsubara, K.; Sakurai, K.; Tampo, H.; Ishizuka, S.; Kim, K. K.; Niki, S., Excitation-Power Dependence of Free Exciton Photoluminescence of Semiconductors. Jpn. J. Appl. Phys., 44 (8), 6113-6114 (2005).
    (158) Chen, Z.; Yu, C.; Shum, K.; Wang, J. J.; Pfenninger, W.; Vockic, N.; Midgley, J.; Kenney, J. T., Photoluminescence Study of Polycrystalline CsSnI3 Thin Films: Determination of Exciton Binding Energy. J. Lumines., 132 (2), 345-349 (2012).
    (159) Song, T. B.; Yokoyama, T.; Aramaki, S.; Kanatzidis, M. G., Performance Enhancement of Lead-Free Tin-Based Perovskite Solar Cells with Reducing Atmosphere-Assisted Dispersible Additive. ACS Energy Lett., 2 (4), 897-903 (2017).
    (160) Wiersma, D. S., Random lasers explained? Nat. Photonics, 3, 246-248 (2009).
    (161) Lee, Y. J.; Yeh, T. W.; Nagarjuna, P.; Tseng, C. C.; Yi, J. Y., A Strain-Gauge Random Laser. APL Mater., 7 (6), 061103 (2019).
    (162) Wang, N.; Zhou, Y.; Ju, M. G.; Garces, H. F.; Ding, T.; Pang, S.; Zeng, X. C.; Padture, N. P.; Sun, X. W., Heterojunction-Depleted Lead-Free Perovskite Solar Cells with Coarse-Grained B-γ-CsSnI3 Thin Films. Adv. Energy Mater., 6 (24), 1601130 (2016).
    (163) Gao, L.; Yadgarov, L.; Sharma, R.; Korobko, R.; McCall, K. M.; Fabini, D. H.; Stoumpos, C. C.; Kanatzidis, M. G.; Rappe, A. M.; Yaffe, O., Metal Cation s Lone-Pairs Increase Octahedral Tilting Instabilities in Halide Perovskites. Mater. Adv., 2 (14), 4610-4616 (2021).
    (164) Knief, S.; von Niessen, W., Disorder, Defects, and Optical Absorption in a-Si and a-Si:H. Phys. Rev. B, 59 (20), 12940-12946 (1999).
    (165) Wong, J.; Omelchenko, S. T.; Atwater, H. A., Impact of Semiconductor Band Tails and Band Filling on Photovoltaic Efficiency Limits. ACS Energy Lett., 6 (1), 52-57 (2021).
    (166) Hua, B.; Motohisa, J.; Kobayashi, Y.; Hara, S.; Fukui, T., Single GaAs/GaAsP Coaxial Core−Shell Nanowire Lasers. Nano Lett., 9 (1), 112-116 (2009).
    (167) Kumar, M. H.; Dharani, S.; Leong, W. L.; Boix, P. P.; Prabhakar, R. R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M.; Graetzel, M.; Mhaisalkar, S. G.; Mathews, N., Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation. Adv. Mater., 26 (41), 7122-7127 (2014).
    (168) Wu, B.; Zhou, Y.; Xing, G.; Xu, Q.; Garces, H. F.; Solanki, A.; Goh, T. W.; Padture, N. P.; Sum, T. C., Long Minority-Carrier Diffusion Length and Low Surface-Recombination Velocity in Inorganic Lead-Free CsSnI3 Perovskite Crystal for Solar Cells. Adv. Funct. Mater., 27 (7), 1604818 (2017).
    (169) Song, T. B.; Yokoyama, T.; Logsdon, J.; Wasielewski, M. R.; Aramaki, S.; Kanatzidis, M. G., Piperazine Suppresses Self-Doping in CsSnI3 Perovskite Solar Cells. ACS Appl. Energ. Mater., 1 (8), 4221-4226 (2018).
    (170) Rudin, S.; Reinecke, T. L.; Segall, B., Temperature-Dependent Exciton Linewidths in Semiconductors. Phys. Rev. B, 42 (17), 11218-11231 (1990).
    (171) Wright, A. D.; Verdi, C.; Milot, R. L.; Eperon, G. E.; Pérez-Osorio, M. A.; Snaith, H. J.; Giustino, F.; Johnston, M. B.; Herz, L. M., Electron–Phonon Coupling in Hybrid Lead Halide Perovskites. Nat. Commun., 7 (1), 11755 (2016).
    (172) Viswanath, A. K.; Lee, J. I.; Kim, D.; Lee, C. R.; Leem, J. Y., Exciton-Phonon Interactions, Exciton Binding Energy, and Their Importance in the Realization of Room-Temperature Semiconductor Lasers Based on GaN. Phys. Rev. B, 58 (24), 16333-16339 (1998).
    (173) Lee, J.; Koteles, E. S.; Vassell, M. O., Luminescence Linewidths of Excitons in GaAs Quantum Wells below 150 K. Phys. Rev. B, 33 (8), 5512-5516 (1986).
    (174) Malikova, L.; Krystek, W.; Pollak, F. H.; Dai, N.; Cavus, A.; Tamargo, M. C., Temperature Dependence of the Direct Gaps of ZnSe and Zn0.56Cd0.44Se. Phys. Rev. B, 54 (3), 1819-1824 (1996).
    (175) Luo, B.; Liang, D.; Sun, S.; Xiao, Y.; Lian, X.; Li, X.; Li, M. D.; Huang, X. C.; Zhang, J. Z., Breaking Forbidden Transitions for Emission of Self-Trapped Excitons in Two Dimensional (F2CHCH2NH3)2CdBr4 Perovskite through Pb Alloying. J. Phys. Chem. Lett., 11 (1), 199-205 (2020).
    (176) Donaldson, J. D.; Ross, S. D.; Silver, J., The Vibrational Spectra of Some Caesium Tin(II) Halides. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 31 (3), 239-243 (1975).
    (177) Kalytchuk, S.; Zhovtiuk, O.; Kershaw, S. V.; Zbořil, R.; Rogach, A. L., Temperature-Dependent Exciton and Trap-Related Photoluminescence of CdTe Quantum Dots Embedded in a NaCl Matrix: Implication in Thermometry. Small, 12 (4), 466-476 (2016).
    (178) ten Kate, O. M.; van Ommen, J. R.; Hintzen, H. T., Influence of Composition and Structure on the Thermal Quenching of the 5d–4f Emission of Eu2+ Doped M–Si–N (M = Alkali, Alkaline Earth, Rare Earth) Nitridosilicates. J. Mater. Chem. C, 7 (21), 6289-6300 (2019).
    (179) Diroll, B. T.; Nedelcu, G.; Kovalenko, M. V.; Schaller, R. D., High-Temperature Photoluminescence of CsPbX3 (X = Cl, Br, I) Nanocrystals. Adv. Funct. Mater., 27 (21), 1606750 (2017).
    (180) Weber, M. J., Multiphonon Relaxation of Rare-Earth Ions in Yttrium Orthoaluminate. Phys. Rev. B, 8 (1), 54-64 (1973).
    (181) Riseberg, L. A.; Moos, H. W., Multiphonon Orbit-Lattice Relaxation of Excited States of Rare-Earth Ions in Crystals. Phys. Rev., 174 (2), 429-438 (1968).
    (182) Zhang, Y., Applications of Huang–Rhys Theory in Semiconductor Optical Spectroscopy. J. Semicond., 40 (9), 091102 (2019).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE