簡易檢索 / 詳目顯示

研究生: 李宜庭
Lee, Yi-Ting
論文名稱: 固態氧化物燃料電池/史特林引擎混合動力系統性能分析
Hybrid Solid oxide fuel cells/Stirling engine System Analysis
指導教授: 賴新一
Lai, Hsin-Yi
共同指導教授: 陳朝光
Chen, Chao-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 98
中文關鍵詞: 有限時間熱力學混合動力系統固態氧化物燃料電池史特林引擎
外文關鍵詞: Finite time thermodynamic, Hybrid system, Solid Oxide Fuel Cell, Stirling Engine
相關次數: 點閱:152下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討之發電裝置為固態氧化物燃料電池(Solid Oxide Fuel Cell, SOFC),結合史特林引擎以及其他子系統,設計不同系統介面,評估改善並尋找較佳效能之系統,並且藉由有限時間熱傳分析史特林引擎並考量多項 SOFC 輸出電壓之不可逆因子,使得計算之效率可以更加準確。
    研究指出系統過往學者以有限時間熱傳考量下分析之系統在燃料加熱過程考量不完善,如本研究之 SOFC 史特林引擎結合回熱器之混合動力系統,即便其擁有最高之效率,卻沒有太大之實用參考價值。在改良燃料加熱介面後之加入加熱器、燃燒室以及兩個熱交換器之SOFC史特林混合動力系統擁有較其他系統較佳之輸出效率,因此是本文探討之主要研究對象。從數值模擬結果得知在溫度較低的 SOFC 工作環境下整體擁有較佳之系統效能,係由於燃料加熱過程在高溫環境需要消耗更多熱能,此外,在固定其他參數下得到燃料利用率越高之情況下,系統握有較優之整體輸出效率。
    本研究以考慮 SOFC 之不可逆因子計算其輸出功率,並以有限時間熱傳分析史特林引擎使分析結果更接近實際,此外,在以往考量有限時間熱傳分析之系統的架設上,本文針對燃料加熱系統進行介面設計,使得 SOFC 結合其他系統之效率可以得到提升,最後得到SOFC 混合動力系統之設計以中溫工作範疇(873K)具有較高效率之優勢,其效率在較佳之系統中約高出16.37%。

    A cogeneration system based on a Solid Oxide Fuel Cell (SOFC) integrated with a Stirling Engine(SE) and other thermal subsystems. The effects on the system performance are investigated of designing different system interfaces. By analyzing the Stirling engine with finite time heat transfer law and considering multiple irreversible factors of SOFC output voltages, the efficiency of the calculation can be more accurate.
    Those systems which took finite time heat transfer analysis into account were not perfectly considered by former scholars in the fuel heating process. For example, the SOFC-SE hybrid system which combined with a regenerator in this study does not have much practical value even if it has the highest efficiency. The system SOFC-SE hybrid system which combined with a burner, a heater, and two heat exchangers which improves the fuel heating interface has better efficiency than other systems, so it is the main research object of this paper. From the numerical simulation results, it is found that the overall system performance is better when the SOFC works at lower temperatures. It is because that the fuel heating process consumes more heat at higher SOFC working temperature. In addition, the system has a better overall efficiency when the fuel utilization rate is higher.
    In this study, the output power is calculated by considering the irreversible factor of SOFC, and the Stirling engine is analyzed by finite time heat transfer law to make the analysis result closer to reality. In addition, based on previous systems using finite time heat transfer analysis, we designed the interface for the fuel heating system in this paper, so that the efficiency of SOFC hybrid systems can be improved.

    中文摘要 I Extend Abstract III 致謝 IX 目錄 X 表目錄 XIII 圖目錄 XIV 符號目錄 XVII 第一章 緒論 1 1.1研究動機 1 1.2研究目的 6 1.3章節瀏覽 7 第二章 文獻回顧與基本理論 8 2.1 SOFC 基本介紹 8 2.2 SOFC 的運作原理與極化現象 12 2.2.1 SOFC 的運作原理 12 2.2.2 SOFC 的極化現象 14 2.3 SOFC 結合混合動力系統之發展 19 2.4 SOFC 史特林引擎簡介與史特林混合系統 20 2.5 有限時間熱力學及其應用 22 第三章 有限時間熱力學與 SOFC-SE 之系統架構 25 3.1 有限時間熱力學基礎 25 3.1.1 古典卡諾熱效率分析 29 3.1.2 有限時間熱力學分析卡諾熱機 30 3.2 本研究之假設與理論流程 35 3.3 SOFC-SE系統架構與計算方法 36 3.3.1 各系統架構模型 37 3.3.2 固態氧化物燃料電池 SOFC 之輸出功率及效率 39 3.3.3 不完全回熱之史特林引擎輸出功率及效率 43 3.3.4 系統 SOFC+B+H+HEX1+SE+HEX2 之內部計算 47 3.3.5 系統 SOFC+B+HEX1+H+SE+HEX2 之內部計算 51 第四章 SOFC-SE 數值模擬結果與討論 53 4.1 數值模擬驗證 53 4.1.1 史特林引擎之有限時間熱力學分析驗證 54 4.1.2 SOFC 考慮不可逆因子求最終輸出電壓之驗證 56 4.2 比較不同混合動力系統模型並確立較佳模型 58 4.2.1 回熱器混合動力(SOFC+SE+R) 系統與分析 60 4.2.2 燃燒室加熱器熱交換器混合動力系統 66 4.2.3 燃燒室加熱器二熱交換器混合動力系統 71 4.2.4 燃燒室加熱器二熱交換器混合動力系統 76 4.2.5 所有系統效率及最大功率之比較 81 4.3 SOFC-SE 混合動力系統之定量分析 84 4.3.1 給定 SOFC 功率探討不同燃料利用率下之系統功效 84 4.3.2 給定較大 SOFC 燃料量探討不同燃料利用率系統功效 86 4.3.3 給定較小 SOFC 燃料量探討不同燃料利用率系統功效 89 第五章 研究結論與未來展望 92 5.1 研究結論 92 5.2 未來展望 93 參考文獻 94

    [1] S.C. Singhal, “Advances in solid oxide fuel cell technology”, Solid State Ionics, Vol. 135, pp. 305-313, 2000.
    [2] H.C. Patel, T.Woudstra, P.V. Aravind, “Thermodynamic Analysis of Solid OxideFuel Cell Gas Turbine Systems Operating with Various Biofuels”, Fuel Cell, Vol. 12, pp. 1115-1128, 2012.
    [3] S.H. Chan, H.K. Ho, Y.Tian, “Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant”, Journal of Power Sources, Vol. 109, pp. 111-120, 2002.
    [4] C. Willich, C. Westner, M. Henke, F. Leucht, J. Kallo, and K.A. Friedrich, “Pressurized Solid Oxide Fuel Cells with Reformate as Fuel”, Journal of The Electrochemical Society, Vol. 159, pp. F711-F716, 2012.
    [5] X.Q. Zhang, J.C. Chen, “Performance analysis and parametric optimum criteria of a class of irreversible fuel cell/heat engine hybrid system”, International Journal of Hydrogen Energy, Vol. 35, pp. 284–293, 2010.
    [6] F.A. Al-Sulaiman, I. Dincer, F. Hamdullahpour, “Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production”, Journal of Power Sources, Vol. 195, pp. 2346-2354, 2010.
    [7] J. Qin, W. Zhou, W. Bao, et al, “Thermodynamic analysis and parametric study of a closed Brayton cycle thermal management system for scramjet”, International Journal of Hydrogen Energy, Vol. 35, pp. 356-364, 2010.
    [8] D. Sanchez, R. Chartegui, M. Torres, et al, “Stirling based fuel cell hybrid systems: An alternative for molten carbonate fuel cells”, Journal of Power Sources, Vol. 192, pp. 84-93, 2009.
    [9] F. Wu, L.G. Chen, F.R. Sun, “Optimum performance of irreversible Stirling engine with imperfect regeneration”, Energy Conversion and Management, Vol. 39, pp. 727-732, 1998.
    [10] M. Costea, M. Feidt, “The effect of the overall heat transfer coefficient variation on the optimal distribution of the heat transfer surface conductance or area in a Stirling engine”, Energy Conversion and Management, Vol. 39, pp. 1753–1761, 1998.
    [11] J.C. Chen, Z.J. Yan, L.X. Chen, et al, “Efficiency bound of a solar-driven Stirling heat engine system”, International journal of Energy Research, Vol. 22, pp. 805–812, 1998.
    [12] A. Durmayaz, O.S. Sogut, B. Sahin, et al, “Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics”, Progress in Energy and Combustion Science, Vol. 135, pp. 305-313, 2004.
    [13] Kongtragool B, Wongwises S. “Optimum absorber temperature of a once-reflecting full conical concentrator of a low-temperature differential Stirling engines”, Renewable Energy, Vol. 30, pp. 1671–1687, 2005.
    [14] T. Yilmaz, Y. Ust, A. Erdil. “Optimum operation conditions of irreversible solar driven heat engines”, Renewable Energy, Vol. 31, pp. 1333–1342, 2006.
    [15] Y.Q. Li, Y.L. He, W.W. Wang, “Optimization of solar-powered Stirling heat engine with finite-time thermodynamics”, Renewable Energy, Vol. 36, pp. 421-427, 2011.
    [16] S. Carnot, Reflections on the Motive Power of Fire, Bachelier, Paris, 1824.
    [17] I.I. Novikov, “The efficiency of atomic power stations (A review )”, Atommaya Energiya, Vol. 3, No.11, pp. 409, 1957.
    [18] Chambadal, P., Les Centrales Nucleaires, Armand Colin, Paris, pp.41-58, 1957.
    [19] F.L. Curzon, B. Ahlborn, “Efficiency of a Carnot engine at maximum power output”, American Journal of Physics, Vol. 43, No.1, pp. 22-24, 1975.
    [20] B. W. Chung, C. N. Chervinb, J. J. Haslama, A. Q. Phama, R. S. Glassa, “Development and Characterization of a High Performance Thin-Film Planar SOFC Stack”, Journal of The Electrochemical Society, Vol. 152, pp. A265-A269, 2005.
    [21] J. Larminie, A. Dicks, Fuel Cell Systems Explained, John Wiley & Sons. Ltd., England, 2003.
    [22] J. D. Kim, G. D. Kim, J. W. Moon, Y. Park, W. H. Lee, K. Kobayashi, M. Nagai, C. E. Kim, “Characterization of LSM–YSZ composite electrode by ac impedance spectroscopy”, Solid State Ionics, Vol. 143, pp. 379-389, 2001.
    [23] T. Mahata, S.R. Nair, R.K. Lenka, P.K. Sinha, “Fabrication of Ni-YSZ anode supported tubular SOFC through iso-pressing and co-firing route”, International Journal of Hydrogen Energy, Vol. 37, pp. 3874-3882, 2012.
    [24] N.Q. Minh, “Solid oxide fuel cell technology—features and applications”, Solid State Ionics, Vol. 174, pp. 271–277, 2004.
    [25] W.Z. Zhu, S.C. Deevi, “A review on the status of anode materials for solid oxide fuel cells”, Solid State Ionics, Vol. 362, pp. 228–239, 2003.
    [26] J. Nielsen, P. Hjalmarsson, M.H. Hansen, P. Blennow, “Effect of low temperature in-situ sintering on the impedance and the performance of intermediate temperature solid oxide fuel cell cathodes”, Journal of Power Sources, Vol. 245, pp. 418–428, 2014.
    [27] J.T.S. Irvine, A. Sauvet, “Improved Oxidation of Hydrocarbons with New Electrodes in High Temperature Fuel Cells”, Fuel Cell, Vol. 1, pp. 205–210, 2001.
    [28] C. Bo, C. Yuan, X. Zhao, C.B. Wu, M.Q. Li, “Parametric analysis of solid oxide fuel cell”, Clean Technologies and Environmental Policy, Vol. 11, pp. 391–399, 2009.
    [29] Tsutomu Ioroi, Takanori Oku, “Influence of PTFE coating on gas diffusion backing for unitized regenerative polymer electrolyte fuel cells”, Journal of Power Sources, Vol. 124, pp. 385–389, 2003.
    [30] Yuan Duqi, “Reply to Comment on: The Analytical Method of Finite Time Thermodynamics about the Physical and the Chemical Performances of the Full Cell”, Chinese Journal of Chemical Physics, Vol. 14, pp. 381, 2001.
    [31] X. Chen, Y. Pan, J. Chen, “Performance and Evaluation of a Fuel Cell–Thermoelectric Generator Hybrid System”, Fuel Cell, Vol. 10, pp. 1164-1170, 2010.
    [32] G. Rizzoni, L. Guzzella, B. M. Baumann, “Unified Modeling of Hybrid Electric Vehicle Drivetrains”, IEEE-ASME T Mech, Vol. 4, pp. 246-257, 1999.
    [33] M. Burer, K. Tanaka, D. Favrat, et al, “Multi-criteria optimization of a district cogeneration plant integrating a solid oxide fuel cell–gas turbine combined cycle, heat pumps and chillers”, Energy, Vol. 28, pp. 497-518, 2003.
    [34] D. F. Cheddie, “Thermo-economic optimization of an indirectly coupled solid oxide fuel cell/gas turbine hybrid power plant”, International Journal of Hydrogen Energy, Vol. 36, pp. 1702-1709, 2011.
    [35] M. Rokni, “Biomass gasification integrated with a solid oxide fuel cell and Stirling engine”, Energy, Vol. 77, pp. 6-18, 2014.
    [36] M. Rokni, “Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine”, Energy, Vol. 76, pp. 19-31, 2014.
    [37] Ondrechen, M. J., Rubin, M. H., and Band, Y. B., “The generalized Carnot cycle: A working fluid operating in finite time between finite heat sources and sinks”, Journal of chemical Physics, Vol. 78, pp. 4721-4727, 1983.
    [38] De Vos, A., “Efficiency of some heat engines at maximum power conditions.”, American Journal of Physics, Vol. 53, pp. 570-573, 1985.
    [39] Angulo Btown, F., “An ecological optimization criterion for finite time heat engines”, Journal of Applied Physics, Vol. 69, pp. 7465-7469, 1991.
    [40] Ibrahim, O. M, Klein, S. A., and Mitchell, J. W., “Optimum Heat Power Cycles for Specified Boundary Conditions”, Journal of Engineering for Gas Turbines and Power, Vol. 113, pp. 514-521, 1991.
    [41] Klein, S. A., “An explanation for observed compression ratios in Internal combustion engines”, Journal of Engineering for Gas Turbines and Power, Vol. 113, pp. 511-513, 1991.
    [42] Wu, C., and Kiang, R. L., “Power performance of a nonisentropic Brayton cycle”, Journal of Engineering for Gas Turbines and Power, Vol. 113, pp. 501-504, 1991.
    [43] J. C. Chen, Z. J. Yan, “Optimal performance of endoreversible cycles for another linear heat transfer law”, Journal of Physics D: Applied Physics, Vol. 26, pp. 1581-1586, 1993.
    [44] F. Sun, L. Chen, W. Chen, “Finite time thermodynamic analysis and evaluation for a heat steady-state energy conversion between two heat reservoirs”, Journal of Engineering for Thermal Energy and Power, Vol. 4, pp. 1-6, 1989.
    [45] Angulo Brown, F., J. A., Rocha Martinez, T. D., Navarrete Gonzalez, “A non-endoreversible Otto cycle model: improving power output and efficiency”, Journal of Physics D: Applied Physics, Vol. 29, pp. 80-83, 1996.
    [46] L. G. Chen, J. X. Lin, F. R. Sun, C. I, Wu, “Efficiency of an Atkinson engine at maximum power density”, Energy Conversion and Management, Vol. 39, pp. 337-341, 1998.
    [47] L. G. Chen, C. Wu, F. R. Sun, C. S. Cao, “Heat transfer effects on the net work output and efficiency characteristics for an air-standard Otto cycle”, Energy Conversion and Management, Vol. 39, pp. 643-648, 1998.
    [48] L. G. Chen, C. Wu, F. R. Sun, “Effect of heat transfer law on the performance of a generalized irreversible Carnot engine”, Journal of Physics D: Applied Physics, Vol. 32, pp. 99-105, 1999.
    [49] J. X. Lin, L. G. Chen, C. Wu, F. R. Sun, “Finite time thermodynamic performance of a Dual cycle”, International Journal of Energy Research, Vol. 23, pp. 765-772, 1999.
    [50] LIAO TianJun, YANG ZhiMin, LIN BiHong, “Performance optimization of a solid oxide fuel cell-stirling heat engine hybrid power system”, College of Information Science and Engineering, Vol. 44, pp. 822-832, 2014.
    [51] K. Frank, R. M. Manglik, M. S. Bohn, Principles of heat transfer, Cengage learning, Canada, 2012.
    [52] Açıkkalp Emin, “Thermo-environmental performance analysis of irreversible solid oxide fuel cell–Stirling heat engine”, International Journal of Ambient Energy, pp. 1-8, 2017.
    [53] J. V. Hosseinpour, M. S. Sadeghi, A. T. Chitsaz, F. R. M. Ranjbar, M. C. A. Rosen, “Exergy assessment and optimization of a cogeneration system based on a solid oxide fuel cell integrated with a Stirling engine”, Energy Conversion and Management, Vol. 143, pp. 448-458, 2017.
    [54] L. B. Georgy, D. V. Jou, J. C. Vazquez, Understanding non-equilibrium thermodynamics, Springer, Berlin, 2008.
    [55] 蘇益豐,「應用有限時間熱力學與可用能方法於冷凍循環系統之研究」,國立成功大學博士論文,2005。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE