| 研究生: |
廖坤厚 Liao, Kun-Hou |
|---|---|
| 論文名稱: |
催化劑特性對準直性奈米碳管成長之影響 Effects of Catalyst Characteristics on the Growth of Aligned Carbon Nanotubes |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 220 |
| 中文關鍵詞: | 奈米碳管 、催化劑 、成長機制 |
| 外文關鍵詞: | carbon nanotube, growth mechanism, catalyst |
| 相關次數: | 點閱:71 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
在低溫下能夠快速成長高密度且具高準直性奈米碳管的成長技術,不僅是經濟成本方面的考量,更是碳管運用上所亟須克服與改善的成長技術;本研究擬採用微波電漿輔助化學氣相沉積法於低溫下成長奈米碳管,分別嘗試以過渡金屬Fe、Co、Ni薄膜為成長催化劑,並以新穎催化劑材料Co52Fe20Zr8B20合金及Fe-Si薄膜為成長奈米碳管的催化劑,其中催化劑薄膜之特性分別是:Fe、Co及Fe-Si為多晶結構,Ni及Co52Fe20Zr8B20為非晶質結構,這些催化劑中分別含有元素與合金的成分。碳管成長時所使用之反應氣體均為甲烷(碳源)與氫氣的混合氣體,在低溫下成長一維奈米碳材(奈米碳管/線),典型之過渡金屬催化劑(Fe, Co, Ni)及Co52Fe20Zr8B20合金等雖有種類與結構上的差異,但均無法有效地快速成長高密度之準直性奈米碳管,有鑑於此,本研究即對Fe催化劑進行改質,將Si添加於Fe中而形成Fe-Si合金催化劑以增進C原子在Fe中之擴散能力,已成功地在低溫下快速成長出高密度及高準直性的奈米碳管。
以Fe薄膜作為催化劑時,可成長出奈米碳線,其成長速率最高為0.3 μm/min,碳線之分布密度為108/cm2;以Co催化劑薄膜成長奈米碳管時,碳管的成長表面型態為彎折捲曲的形狀,其成長速率約為0.12 μm/min,碳管的分布密度則低於108/cm2;再者以Ni催化劑薄膜可成長出結晶性之奈米碳線,發現奈米碳線的石墨底面與碳線成長軸向呈垂直關係,其成長速率約為2.3 μm/min,碳管的分布密度則低於108/cm2;採用新穎之催化劑薄膜Co52Fe20Zr8B20合金,其所成長之奈米碳管的平均直徑隨著膜厚增加而增加,但碳管長度則隨膜厚增加而減少,碳管的成長速率最高為0.9 μm/min,碳管的分布密度約為108/cm2,較大直徑碳管(大催化劑顆粒)的成長型態與模式屬於本體擴散的範疇,較小直徑碳管(小催化劑顆粒)之成長型態與模式屬於表面擴散的成長機制成長。
最後以Fe-Si薄膜為催化劑,已可於低溫下快速(18 μm/min)成長高密度(1010/cm2)之準直性奈米碳管,且平均碳管直徑均為12±5nm,碳管的成長速率隨CH4/H2氣體比例增加而呈線性增加,奈米碳管是屬於底部成長的模式(Base growth mode),以Fe-Si催化劑薄膜在成長奈米碳管之際,其薄膜結構明顯地分成基層與叢集層,基層提供碳管成長的位址,其中Si含量增進C在Fe中之擴散能力,使奈米碳管呈非線性的關係成長:L t1.5 (奈米碳管成長的長度(L)與成長的時間(t)),另因C在叢集層(Fe3O4)中之擴散速度相對較慢,最後形成雜質而被碳管成長時抬起至碳管的頂端,本研究更提出以Fe-Si成長奈米碳管之成長機制屬於反應控制(reaction-controlled)的成長模式,並證明碳管以L t1.5關係成長之成長機制,同時解釋碳管終止成長的原因。
Abstract
Microwave plasma-enhanced chemical vapor deposition (MPCVD) system was employed to grow one-dimensional carbon nanomaterials at low temperature of 370℃ under a methane and hydrogen gas mixture in this research. Five different catalysts were used, including transition metals Fe, Co, Ni and novel catalyst Co52Fe20Zr8B20, Fe-Si alloys. A low-temperature, nonlinear rapid growth of aligned carbon nanotubes with high area-density had been obtained using Fe-Si thin film as a catalyst.
Carbon nanowires (CNWs) were grown on Fe thin film catalyst. The growth rate and area-density of CNWs is 0.3 μm/min and 108/cm2, respectively. When the Co thin films were used as the catalyst, the diameter of carbon nanotubes (CNTs) with broadening distribution range is 57±39 nm. The CNTs exhibited a twist and winding growth morphology. The growth rate and area-density of CNTs is 0.12 μm/min and lower 108/cm2, respectively. The use of amorphous Ni as the catalyst led to the formation of crystalline CNW but not amorphous CNW. In general, a catalyst can be seen at the tip of each CNW. The carbon nanowires were also found to exhibit an interesting microstructure where the basal planes were perpendicular to the wire axial direction and parallel to the closest packing plane of the catalyst. The growth rate and area-density of CNTs is 2.3 μm/min and lower 108/cm2, respectively. When the Co52Fe20Zr8B20 thin films were used as catalysts, the average diameters of CNTs increase with the film thickness. However, the average length of the CNTs was found to decreases with the film thickness. The growth rate and area-density of CNTs are 0.9 μm/min and 108/cm2, respectively. Depending on the diameter of CNT, the diffusion of carbon in the catalyst particle are either a bulk diffusion (larger diameter) or surface diffusion (smaller diameter).
A low-temperature (370℃), nonlinear rapid (18 μm/min) growth of aligned carbon nanotubes with high area-density (1010/cm2) had been obtained using Fe-Si thin film as the catalyst. All the CNTs with the base growth mode have the same average diameter near 12±5 nm. The Raman signatures of the CNTs consist of two main peaks near 1326 cm-1 (D-band) and 1580cm-1 (G-band) with a shoulder peak D’-line (1610 cm-1). As usual, the ID/IG ratio decreases with increasing methane/hydrogen, and the G-band broadens with increasing methane/hydrogen ratio. The Raman analyses indicated that the sp2 graphite cluster La of carbon products surrounding with carbon or graphite layer decreased. In other words, the growth carbon materials on Fe-Si catalyst are near amorphous carbon under a higher methane concentration. When the CNTs growth, the etched Fe-Si films were divided into two layer, base layer and aggregate layer. The base layer provided the aligned CNTs growth sites and the aggregate layer formed the impurity on the tip of CNTs. The growth of well-aligned carbon nanotubes (CNTs) having increased growth rate at reduced growth temperature as a result of using Fe-Si as the catalyst. Fe-Si catalyst leads to not only a low growth temperature of 370℃ but also an unprecedented, rapid growth kinetics. The lengthening of CNTs was found to be proportional to t15 where t is the growth time. The use of Fe-Si as the catalyst enhances the carbon diffusivity in the catalyst. Due to the enhanced carbon diffusivity and the nonlinear growth kinetics, a reaction-controlled growth model is suggested.
參 考 文 獻
1. M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Physics and Astronomy (2001) 30.
2. R.Z. Ma, J. Wu, B.Q. Wei, J. Liang, D.H. Wu, J. Mater. Sci. 33 (1998) 5243.
3. R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D.D. Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz, Science 284 (1999) 1340.
4. A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Science 294 (2001) 1317.
5. P.G. Collins, A. Zettl, H. Bando, A. Thess, R.E. Smalley, Science 278 (1997) 100.
6. Y. Chen, D.T. Shaw, X.D. Bai, E.G. Wang, C. Lund, W.M. Lu, D.D. L. Chung, Appl. Phys. Lett. 78 (2001) 2128.
7. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Science 287 (2000) 622.
8. J.L. Kwo, M. Yokoyama, W.C. Wang, F.Y. Chuang, I.N. Lin, Diamond and Rel. Mater. 9 (2000) 1270.
9. H. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley, Nature 384 (1996) 147.
10. P. Kim, C.M. Lieber, Science 286 (1999) 2148.
11. H.W.C. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker, Science 293 (2001) 76.
12. G. Hummer, J.C. Rasalah, J.P. Noworyta, Nature 414 (2001) 188.
13. S.J. Trans, A.R.M. Verschueren, C. Dekker, Nature 393 (1998) 49.
14. S.H. Jo, Y. Tu, Z.P. Huang, D.L. Carnahan, D.Z. Wang, Z.F. Ren, Appl. Phys. Lett. 82 (2003) 3520.
15. R.H. Baughman, A.A. Zakhidov, W.A. Heer, Science 297 (2002) 787.
16. W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Science 274 (1996) 1701.
17. Z.W. Pan, S.S. Xie, B.H. Chang, C.Y. Wang, L. Lu, W. Liu, W.Y. Zhou, W.Z. Li, L.X. Qian Nature 394 (1998) 631.
18. S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Science 283 (1999) 512.
19. Y.Y. Wang, S. Gupta, R.J. Nemanich, Appl. Phys. Lett. 85 (2004) 2601.
20. Y.T. Lee, N.S. Kim, S.Y. Bae, J. Park, S.C. Yu, H. Ryu, H.J. Lee, J. Phys. Chem. B 107 (2003) 12958.
21. A. Cao, X. Zhang, C. Xu, J. Liang, D. Wu, X. Chen, B. Wei, P.M. Ajayan, Appl. Phys. Lett. 79 (2001) 1252.
22. C. Emmenegger, J.M. Bonard, P. Mauron, P. Sudan, A. Lepora, B. Grobety, A. Zuttel, L. Schlapbach, Carbon 41 (2003) 539.
23. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Science 282 (1998) 1105.
24. K.H. Jung, J.H. Boo, B. Hong, Diamond Relat. Mater. 13 (2004) 299.
25. L.C. Chen, C.Y. Wen, C.H. Liang, W.K. Hong, K.J. Chen, H.C. Cheng, C.S. Shen, C.T. Wu, K.H. Chen, Adv. Funct. Mater. 12 (2002) 687.
26. S.G. Wang, J.H. Wang, Z.B. Ma, C.X. Wang, W.D. Man, B.H. Zhang, Diamond Relat. Mater. 12 (2003) 2175.
27. E.G. Wang, Z.G. Guo, J. Ma, M.M. Zhou, Y.K. Pu, S. Liu, G.Y. Zhang, D.Y. Zhong, Carbon 41 (2003) 1827.
28. W.K. Wong, C.P. Li, F.C.K. Au, M.K. Fung, X.H. Sun, C.S. Lee, S.T. Lee, W. Zhu, J. Phys. Chem. B 107 (2003) 1514.
29. C.L. Lin, C.F. Chen, S.C. Shi, Diamond Relat. Mater. 13 (2004) 1026.
30. Y.S. Woo, D.Y. Jeon, I.T. Han, Y.J. Park, H.J. Kim, J.E. Jung, J.M. Kim, N.S. Lee, J. Vac. Sci. Technol. B 21 (2003) 1660.
31. S. Hofmann, C. Ducati, J. Robertson, B. Kleinsorge, Appl. Phys. Lett. 83 (2003) 135.
32. X. Wang, Z. Hu, Q. Wu, Y. Chen, Catal. Today 72 (2002) 205.
33. Y.C. Choi, D.J. Bae, Y.H. Lee, B.S. Lee, I.T. Han, W.B. Choi, N.S. Lee, J.M. Kim, Synthetic Metals 108 (2000) 159.
34. J.I.B. Wilson, N. Scheerbaum, S. Karim, N. Polwart, P. John, Y. Fan, A.G. Fitzgerald, Diamond Relat. Mater. 11 (2002) 918.
35. X. Wang, J. Lu, Y. Xie, G. Du, Q. Guo, S. Zhang, J. Phys. Chem. B 106 (2002) 933.
36. J.K. Vohs, J.J. Brege, J.E. Raymond, A.E. Brown, G.L. Williams, B.D. Fahlman, J. Am. Chem. Soc. 126 (2004) 9936.
37. A.T. Matveev, D. Golberg, V.P. Novikov, L.L. Klimkovich, Y. Bando, Carbon 39 (2001) 137.
38. T.W. Ebbesen, Carbon Nanotubes: preparation and properties, CRC press,1997.
39. H.W. Kroto, J.R. Heath, S.C.O. Brien et al. Nature 318 (1985) 162.
40. B.I. Yakobson, R.E. Smalley, American Scientist 85 (1997) 324.
41. M.S. Dresselhaus, G. Dresselhaus, R. Saito, Carbon 33 (1995) 883.
42. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerence and Carbon Nanotubes, Academic Press, San Diego, 1996.
43. N. Hamada, S Sawada, A. Oshiyama, Phys. Rev. Lett. 68 (1992) 1579.
44. R.T.K. Baker, P.S Harries, Chemistry and Physics of Carbon ,Marcel Dekker, New York (1978) 83.
45. Zhou, R.M. Fleming, D.W. Murphy, C.H. Chen, R.C. Haddon, A.P. Ramirez, S.H. Glarum, Science 263 (1994) 1744.
46. S. Amelinckx, D. Bernaerts, X.B. Zhang, G.V. Tendeloo, J.V. Landuyt, Science 267 (1995) 1334.
47. S. Iijima, Nature 354 (1991) 56.
48. H. Dai, E.W. Wong, C.M. Lieber, Science 272 (1996) 523.
49. T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio, Nature 382 (1996) 54.
50. W. Primak, L.H.Fuchs, Phys. Rev. 95 (1954) 22.
51. B.I. Yakobson, in Fullerences-Recent Advances in the Chemistry abd Physics of Fullerences and Related Materials, R.S. Ruoffand, K.M. Kadish, Eds. (Electrochemical Society, Pennington, NJ, 1997) vol. 5 (97-42), pp. 549-560.
52. M.P. Campbell, C.J. Brabec, J. Bernholc, Comput. Mater. Sci. 8 (1997) 341.
53. B.T. Kelly, Physics of Graphite (Applied Science, London, 1981).
54. B.I. Yakobson, Appl. Phys. Lett. 72 (1998) 918.
55. P. Zhang, P.E. Lammert, V.H. Crespi, Phys. Rev. Lett. 81 (1998) 5346.
56. M.B. Nardelli, B.I. Yakobson, J. Berhholc, Phys. Rev. B, 57 (1998) R4277.
57. M.B. Nardelli, B.I. Yakobson, J. Berhholc, Phys. Rev. Lett. 81 (1998) 4656.
58. P. Poncharal, Z.L. Wang, D. Ugarte, W.A. de Heer, Science, 283 (1999) 1513.
59. J. cumings, A. Zettl, Science 289 (2000) 602.
60. M. Terrones, W.K. Hsu, H.W. Kroto, D.R.M. Walton, Topics in Current Chemistry 199 (1998) 1.
61. R.S. Ruoff, D.C. Lorents, Carbon 33 (1995) 925.
62. S. Berber, Y.K. Kwon, D. Tomanek, Phys. Rev. Lett. 84 (2000) 4613.
63. J. Hone, M. Whitney, C. Piskoti, A. Zettl, Phys. Rev. B 59 (1999) R2514.
64. J. Hone, M.C. Llaguno, N.M. Nemes, A. Johnson, J.E. Fischer, D.A. Walters, M.J. Casavant, J.Schmidt, R.E. Smalley, Appl. Phys. Lett. 77 (2000) 666.
65. W. Yi, L. Lu, D.L. Zhang, Z.W. Pan, S.S. Xie, Phys. Rev. B 59 (1999) R9015.
66. M.A. Osman, D. Srivastava, Nanotechnology 12 (2001) 21.
67. M. J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, J.E. Fischer, Appl. Phys. Lett. 80 (2002) 2767.
68. J. Hone, M.C. Llaguno, M.J. Biercuk, A.T. Johnson, B. Batlogg, Z. Benes, J.E. Fischer, Appl. Phys. A 74 (2002) 339.
69. A.C. Dillon, K.M. Jones, T.A. Bekkedahl, Nature 386 (1997) 377.
70. Y. Ye, C.C. Ahn, C. Witham, Appl. Phys. Lett. 74 (1999) 2307.
71. Y. Chen, D.T. Shaw, X.D. Bai, Appl. Phys. Lett. 78 (2001) 2128.
72. S. Iijima, T. Ichihashi, Nature 363 (1993) 603.
73. T.W. Ebbeseen, P.M. Ajayan, Nature 358 (1992) 220.
74. T.W. Ebbeseen, H. Hiura, J. Fujita, Y. Ochiai, S. Matsui, K. Tanigaki, Chem. Phys. Lett. 209 (1993) 83.
75. S. Seraphin, D. Zhou, J. Jiao, C. Withers, R. Loufty, Carbon 31 (1993) 685.
76. D.S. Bethune, C.H. Kiang, De Vires, Nature 363 (1993) 605.
77. T. Guo, P. Nikolaev, A.G. Rinzler, D. Tomanek, D.T. Colbert, R.E. Smalley, J. Phys. Chem. 99 (1995) 10694.
78. A. Thess, R. Lee, P. Nikolaev, Science 273 (1996) 483.
79. T. Guo, P. Nikolaev, A. Thess, Chem. Phys. Lett. 243 (1995) 49.
80. R.T.K. Baker, M.A. Braber, P.S. Harries, F.S. Feates, R.J. Waite, J. Catalysis 26 (1972) 51.
81. R.T.K. Baker, J.J. Chludzinski, J. Catalysis 64 (1980) 464.
82. A. Oberlin, M. Endo, T. Koyama, J. Cryst. Growth 32 (1976) 335.
83. M. Jung, K.Y. Eun, J.K. Lee, Y.J. Baik, K.R. Lee, J.W. Park, Diamond and Related Materials 10 (2001) 1235.
84. S. Xie, W. Li, Z. Pan, B. Chang, L. Sun, Mater. Sci. Eng. A 286 (2000) 11.
85. X.H. Chen, S.Q. Feng, Y. Ding, J.C. Peng, Z.Z. Chen, Thin Solid Films 339 (1999) 6.
86. C.J. Lee, J. Park, S.Y. Kang, J.H. Lee, Chem. Phys. Lett. 323 (2000) 554.
87. C.J. Lee, J.H. Park, J. Park, Chem. Phys. Lett. 323 (2000) 560.
88. N. Grobert et al., Appl. Phys. A 70 (2000) 175.
89. M. Terrones et al., Nature 388 (1997) 52.
90. M. Terrones et al., Chem. Phys. Lett. 285 (1998) 299.
91. N. Krishnankutty, C. Park, N.M. Rodriguez, R.T.K. Baker, ct37 (1997) 295.
92. Q. Liang, Q. Li, D.L. Chen, D.R. Zhou, B.L. Zhang, Z.L. Yu, Chemical Journal of Chinese Universities-Chinese 21 (2000) 623.
93. N.M. Rodriguez, M.S. Kim, F. Tortin, I. Mochida, R.T.K. Baker, Appl. Catalyst A 148 (1997) 265.
94. C.J. Lee, J. Park, J.M. Kim, Y. Huh, J.Y. Lee, K.S. No, Chem. Phys. Lett. 327 (2000) 277.
95. K. Hernadi, A. Fonseca, J.B. Nagy, A. Siska, I. Kiricsi, Appl. Catalysis A, 199 (2000) 245.
96. W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Science 274 (1996) 1701.
97. Z.W. Pan, S.S. Xie, B.H. Chang, L.F. Sun, W.Y. Zhou, G. Wang, Chem. Phys. Lett. 299 (1999) 97.
98. J.Li, C. Papadopoulos, M. Xu, M. Moskovits, Appl. Phys. Lett. 75 (1999) 367.
99. J.Li, C. Papadopoulos, J. Xu, Nature 402 (1999) 253.
100. A.W.H. Mau, L. Dai, J. American Chemical Society 121 (1999) 10832.
101. S. Huang, L. Dai, A.W.H. Mau, J. Physical Chemistry B 103 (1999) 4223.
102. D.R. Lide, H.P.R. Frederikse, Handbook of Chemistry and Physics 75th, CRC Press, London, 1995, p51-52.
103. P.E. Nolan, M.J. Schabel, D.C. Lynch, Carbon 33 (1995) 79.
104. 徐逸明, 化學氣相沉積法及電漿輔助化學氣相沉積法於低溫合成奈米碳管之研究, 國立成功大學化學工程研究所博士論文, 2001.
105. 寇崇善, 微波電漿源之應用, 九十年度微波加熱與乾燥技術研討會.
106. Y.H. Wang, J. Lin, C.H. A. Huan, G.S. Chen, Appl. Phys. Lett. 79 (2001) 680.
107. K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, D.G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat, Appl. Phys. Lett. 79 (2001) 1534.
108. H. Wang, J. Lin, C.H.A. Huang, P. Dong, J. He, S.H. Tang, W.K. Eng, T.L.J. Thong, Applied Surface Science 181 (2 001) 248.
109. M. Okai, T. Muneyoshi, T. Yaguchi, S. Sasaki, Appl. Phys. Lett. 77 (2000) 3468.
110. C. Bower, O. Zhou, W. Zhu, D.J. Werder, S. Jin, Appl. Phys. Lett. 77 (2000) 2767.
111. Y.C. Choi, Y.M. Shin, Y.H. Lee, B.S. Lee, G. Park, W.B. Choi, N.S. Lee, J.M. Kim, Appl. Phys. Lett. 76 (2000) 2367.
112. C. Bower, W. Zhu, S. Jin, O. Zhou, Appl. Phys. Lett. 77 (2000) 830.
113. Y.S. Woo, D.Y. Jeon, I.T. Han, N.S. Lee, J.E. Jung, J.M. Kim, Diamond and Related Materials 11 (2002) 59.
114. M. Endo, H.W. Kroto, J. Phys. Chem. 96 (1992) 6941.
115. Y. Saito, T. Yoshikawa, M. Inagaki, M. Tomita, T. Hayashi, Chem. Phys. Lett. 304 (1999) 277.
116. A. Oberlin, M. Endo, T. Koyama, Carbon 14 (1976) 133.
117. T. Baird, J.R. Fryer, B. Giant, Carbon 12 (1974) 591.
118. Y.J. Yoon, H.K.Baik, Diamond and Related Materials 10 (2001) 1214.
119. Y.H. Tang, P. Zhang, P.S. Kim, T.K. Sham, Y.F. Hu, X. H. Sun, N.B. Wong, M.K. Fung, Y.F. Zheng, C.S. Lee, S.T. Lee, Appl. Phys. Lett. 79 (2001) 3773.
120. H. Yokomichi, F. Sakai, M. Ichihara, N. Kishimoto, Journal of Non-crystalline Solids 299-302 (2002) 868.
121. S. Botti, R. Ciardi, M.L. Terranova, S. Piccirillo, V. Sessa, M. Rossi, Chem. Phys. Lett. 355 (2002) 395.
122. R.L. Vander Wal, L.J. Hall, Chem. Phys. Lett. 349 (2001) 178.
123. A.V. Melechko, V.I. Merkulov, D.H. Lowndes, M.A. Guillorn, M.L. Simpson, Chem. Phys. Lett. 356 (2002) 527.
124. J. Han, J. Yoo, C.Y. Park, H. Kim, G.S. Park, M. Yang, I.T. Han, N. Lee, W. Yi, S.G. Yu, J.M. Kim, Appl. Phys. Lett 91 (2002) 483.
125. 汪建民主編,材料分析,中國材料科學學會,新竹市,民國87年。
126. H. Hiura, T.W. Ebbesen, K. Tanigaki, et al. Chem. Phys. Lett 202 (1993) 509.
127. P.C. Eklund, C. Brabec, M. Buongiorno, A. Maiti, C. Roland, B.I. Yakobson, Appl. Phys. A-Mater. 39 (1998) 67.
128. R.T.K. Baker, J.R. Alonzo, J.A. Dumesic, D.J.C. Yates, J Catalysis 77 (1982) 74.
129. N.M. Rodriguez, J. Mater. Res. 8 (1993) 3233.
130. M. Chhowalla, K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga, A.C. Ferrari, D. Roy, J. Robertson, W.I. Milne, J. Appl. Phys. 90 (2001) 5308.
131. J. Cheng, X. Zhang, F. Liu, J. Tu, Y. Ye, Y. Ji, C. Chen, Carbon 41 (2003) 1965.
132. N. Yoshida, M. Yasutake, T. Arie, S. Akita, Y. Nakayama, Jpn. J. Appl. Phys. 41 (2002) 5013.
133. M. Shao, Q. Li, J. Wu, B. Xie, S. Zhang, Y. Qian, Carbon 40 (2002) 2961.
134. W. Li, H. Zhang, C. Wang, Y. Zhang, L. Xu, K. Zhu, Appl. Phys. Lett. 70 (1997) 2684.
135. L. Liu, Y. Qin, Z.X. Guo, D. Zhu, Carbon 41 (2003) 331.
136. A.C. Ferrari, J. Robertson, J. Phys. Rev. B 61 (2000) 14059.
137. G. Morell, W. Perez, E. Ching-prado, R.S. Katiyar, Phys. Rev. B 53 (1996) 6491.
138. R.C. Hyer, M. Green, S.C. Sharma, Phys. Rev. B 49 (1994) 14573.
139. J.W. Ager, M.D. Droy, Phys. Rev. B 48 (1993) 2601.
140. P.V. Huong, R. Cavagnat, P.M. Ajayan, O. Stephan, Phys. Rev. B 51 (1995) 10048.
141. Y. Ando, X. Zhao, H. Shimoyama, Carbon 39 (2001) 569.
142. M.J. Matthews, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, M. Endo, Phys. Rev. B 59 (1999) R6585.
143. I. Pocsik, M. Hundhausen, M. Koos, L. Ley, J. Non-Cryst. Solids 227-230 (1998) 1083.
144. R.J. Nemanich, S.A. Solin, Phys. Rev. B 20 (1979) 392.
145. F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53 (1970) 1126.
146. S.M. Mominuzzaman, K.M. Krishna, T. Soga, T. Jimbo, M. Umeno, Carbon 38 (2000) 127.
147. C. Bower, W. Zhu, S. Jin, O. Zhou, Appl. Phys. Lett. 77 (2000) 830.
148. H. Ago, T. Komatsu, S. Ohshima, Y. Kuriki, M. Yumura, Appl. Phys. Lett. 77 (2000) 79.
149. E. Couteau, K. Hernadi, J.W. Seo, L. Thien-Nga, Cs. Miko, R. Gaal, L. Forro, Chem. Phys. Lett. 378 (2003) 9.
150. R.M. Liu, J.M. Ting, J.C.A. Huang, C.P. Liu, Thin Solid Films 420-421 (2002) 145.
151. G. Suran, H. Niedoba, M. Naili, O. Acher, V. Meyer, C. Boscher, G. Perrin, J. Magnetism and Magnetic Materials 157/158 (1996) 223.
152. G. Suran, M. Naili, H. Niedoba, F. Machizaud, O. Acher, D. Pain, J. Magnetism and Magnetic Materials 192 (1999) 443.
153. S. Hofmann, M. Cantoro, B. Kleinsorge, C. Casiraghi, A. Parvez, J. Robertson, C. Ducati, J. Appl. Phys. 98 (2005) 034308.
154. Y.Y. Wei, G. Eres, V.I. Merkulov, D.H. Lowndes, Appl. Phys. Lett. 78 (2001) 1394.
155. J.H. Huang, C.C. Chuang, C.H. Tsai, Microelectronic Eng. 66 (2003) 10.
156. Z.F. Ren, Z.P. Huang, D.Z. Wang, J.G. Wen, J.W. Xu, J.H. Wang, L.E. Calvet, J. Chen, J.F. Klemic, M.A. Reed, Appl. Phys. Lett. 75 (1999) 1086.
157. R.T.K. Baker, Carbon 27 (1989) 315.
158. L.C. Qin, D. Zhou, A.R. Krauss, D.M. Gruen, Appl. Phys. Lett. 72 (1998) 3437.
159. A. Oberlin, M. Endo, T. Koyama, Carbon 14 (1976) 133.
160. P. Ball, L. Garwin, Nature 355 (1992) 761.
161. X. Wang, Z. Hu, X. Chen, Y. Chen, Scripta Mater. 44 (2001) 1567.
162. M. Yudasaka, T. Komatsu, T. Ichihashi, S. Iijima, Chem. Phys. Lett. 278 (1997) 102.
163. S.J. Chung, S.H. Lim, C.H. Lee, J. Jang, Diamond Relat. Mater. 10 (2001) 248.
164. C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M.L. Chapelle, S. Lefrant, Nature 388 (1997) 756.
165. J.Y. Lee, B.S. Lee, Thin Solid Films 418 (2002) 85.
166. W.Y. Wu, J.M. Ting, Thin Solid Films 420-421 (2002) 166.
167. Y.H. Tang, N. Wang, Y.F. Zhang, C.S. Lee, I. Bello, S.T. Lee, Appl. Phys. Lett. 75 (1999) 2921.
168. A. Xia, Z. Huizhao, Y. Li, X. Chengshan, Appl. Surf. Sci. 193 (2002) 87.
169. J.L. Kwo, M. Yokoyama, I.N. Lin, J. Vac. Sci. Technol. B 19(3) (2001) 1040.
170. G.G. Tibbetts, J. Crys. Growth 66 (1984) 632.
171. .M. Ishioka, T. Okada, K. Matsubara, Carbon 31 (1993) 699.
172. .W.G. Zhang, H.M. Cheng, G. Su, et al. J. Mater. Sci. Tech. 15(1) (1999) 1.
173. .J.M. Ting, R.M. Liu, Carbon 41 (2003) 601.
174. .R.E. Reed-Hill, R. Abbaschian, Physical Metallurgy Principles, PWS Publishing Com. 3rd Ed. (1991) 439.
175. .R.E. Reed-Hill, R. Abbaschian, Physical Metallurgy Principles, PWS Publishing Com. 3rd Ed. (1991) 194.
176. .V. Randle, Materials Characterization 47 (2001) 411.
177. .M.A. Tamor, W.C. Vassell, J. Appl. Phys. 76(6) (1994) 3823.
178. .J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, S.R.P. Silva, J. Appl. Phys. 80(1) (1996) 440.
179. L.S. Darken, Trans. AIME, Inst. Met. Div., Tech. Pub. (1948) 2443.
180. U. Starke, W. Weiss, M. Kutschera, R. Bandorf, K. Heinz, J Appl. Phys. 91 (2002) 6154.
181. J. Diaz, S.M. Valvidares, R. Morales, J.M. Alameda, J. Magnetism and Magnetic Mater. 242-245 (2002) 166.
182. Y. Shimada, H. Kojima, J Appl. Phys. 47 (1976) 4156.
183. S.K. Sharma, H.P. Geserich, W.A. Theiner, Phys. Stat. Sol. (a) 32 (1975) 467.
184. H.P. Geserich, S.K. Sharma, W.A. Theiner, Phil. Mag. 27 (1973) 1001.
185. N.A. Blum, C. Feldmann, J. Non-crystall. Solids 11 (1972) 242.
186. L.M. Sandler, V.N. Pushkar, I.V. Filonchuk, T.S. Korsunskaya, Phys. Metals 4(5) (1982) 965.
187. L.M. Sandler, V.N. Pushkar, I.V. Filonchuk, T.S. Korsunskaya, Phys. Metals 3(2) (1981) 285.
188. L.M. Sandler, V.N. Pushkar, I.V. Filonchuk, T.S. Korsunskaya, Phys. Stat. Sol. (a) 91 (1985) 371.
189. J.M. Alameda, M.C. Contreras, M. Torres, A.G. Arche, J. Magnetism and Magnetic Mater. 62 (1986) 215.
190. N.R. Baldwin, D.G. Ivey, J. Phase Equilibria 16(4) (1995) 300.
191. K.H. Liao, S.W. Hung, W.J. Liu, J.M. Ting, On the characteristics of iron-silicon thin film catalysts for rapid, low-temperature growth of carbon nanotubes, ICMCTF 2005, May 2-6, 2005, San Diego, p.28.
192. R.C. van Oort, M.J. Geerts, J.C. van der Heuvel, J.W. Metselaar, Electronics Letters 23 (18) (1987) 968.
193. S. Park, R.M. Walser, Carbon 23 (1985) 701.
194. V.I. Merkulov, A.V. Melechko, M.A. Guillorn, D.H. Lowndes, M.L. Simpson, Appl. Phys. Lett. 79 (2001) 2970.
195. M. Shao, D. Wang, G. Yu, B. Hu, W. Yu, Y. Qian, Carbon 42 (2004) 183.
196. K.H. Liao, J.M. Ting, Carbon 42 (2004) 509.
197. T. Arcos, M.G. Garnier, P. Oelhafen, D. Mathys, J.W. Seo, C. Domingo, J.V.G. Ramos, S.S. Cortes, Carbon 42 (2004) 187.
198. W.K. Wong, C.P. Li, F.C.K. Au, M.K. Fung, X.H. Sun, C.S. Lee, S.T. Lee, W. Zhu, J. Phys. Chem. B 107 (2003) 1514.
199. 楊全紅,成會明,”奈米碳管的表面、孔隙及其與儲氫性能關係”,博士後工作報告,中國瀋陽科學院金屬研究所,2001.
200. S. Iijima, Nature (London) 354 (1991) 56.
201. X.F. Zhang, X.B. Zhang, G. Van Tendeloo, S. Amelinckx, M. Op de Beeck, J. Van Landuyt, J. Cryst. Growth 130 (1993) 368.
202. Y. Saito, T. Yoshikawa, S. Bandow, M. Tomita, T. Hayashi, Phys. Rev. B 48 (1993) 1907.
203. M. Bretz, B.G. Demczyk, L. Zhang, J. Cryst. Growth 141 (1994) 304.
204. X. Sun, C.H. Kiang, M. Endo, K. Takeuchi, T. Furuta, M.S. Dresselhaus, Phys. Rev. B 54 (1996) R12629.
205. M. Endo, K. Takeuchi, T. Hiraoka, T. Furuta, T. Kasai, X. Sun, C.H. Kiang, M.S. Dresselhaus, J. Phys. Chem. Solids 58 (1997) 1707.
206. C.H. Kiang, M. Endo, P.M. Ajayan, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. Lett. 81 (1998) 1869.
207. J.M. Cowley, S.D. Packard, Ultramicroscopy 63 (1996) 39.
208. U. Kim, R. Pcionek, D.M. Aslam, D. Tomanek, Diamond Rel. Mater. 10 (2001) 1947.
209. Y.C. Choi, D.J. Bae, Y.H. Lee, B.S. Lee, G.S. Park, W.B. Choi, N.S. Lee, J.M. Kim, J. Vac. Sci. Technol. A 18 (2000) 1864.
210. J. Cao, Y.S. Gu, H.W. Liu, F. Shen, Y.G. Wang, Q.F. Zhang, J.L. Wu, H.J. Gao, J. Mater. Res. 18 (2003) 1686.
211. Y. Yao, L.K.L. Falk, R.E. Morjan, O.A. Nerushev, E.E.B. Campbell, J. Mater. Sci. 15 (2004) 583.
212. Y. Yao, L.K.L. Falk, R.E. Morjan, O.A. Nerushev, E.E.B. Campbell, J. Mater. Sci. 15 (2004) 533.
213. S.M. Huang, L.M. Dai, J. Phys. Chem. B 106 (2002) 3543.
214. S.C. Tsang, Y.K. Chen, P.J.F. Harris, M.L.H. Green, Nature 372 (1994) 159.
215. X. Bei, D. Li, D. Du, H. Zhang, L. Chen, J. Liang, Carbon 42 (2004) 2125.
216. D.B. Geohegan, A.A. Puretzky, I.N. Ivanov, S. Jesse, G. Eres, Appl. Phys. Lett. 83 (2003) 1851.
217. S. Kishimoto, Y. Kojima, Y. Ohno, T. Sugai, H. Shinohara, T. Mizutani, Jap. J. Appl. Phys. 44 (2005) 1554.
218. R. Seidel, G.S. Duesberg, E. Unger, A.P. Graham, M. Liebau, F. Kreupl, J. Phys. Chem. B 108 (2004) 1888.
219. J. Kucera, K. Stransky, Metall. Mater. 30 (1992) 76.
220. B. Million, J. Kucera, P. Michalica, Mater. Sci. Eng. A 190 (1995) 247.
221. Y.C. Chen, C.M. Chen, K.C. Su, K. Yang, Mater. Sci. Eng. A 133 (1991) 596.
222. R.T.L. Baker, M.A. Barber, in: P.L. Walker, P.A. Thrower (Eds), Chemistry and Physics of Carbon, vol. 14, Marcel Dekker, New York, 1978, p. 83.
223. P. Shewmon, Diffusion in Solids, 2nd edition, The Minerals, Metals & Materials Society, TMS, 1989.