簡易檢索 / 詳目顯示

研究生: 徐御宸
Hsu, Yu-Chen
論文名稱: 透過質譜技術以及蛋白質體學技術分析牛血清蛋白包覆金奈米團簇的結構特性
Structural Characterization of Bovine Serum Albumin-Capped Gold nanoclusters by Mass Spectrometry and Proteomics Techniques
指導教授: 陳淑慧
Chen, Shu-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 74
中文關鍵詞: 牛血清蛋白金奈米團簇成核位點
外文關鍵詞: BSA, gold nanoclusters, nucleation site
相關次數: 點閱:74下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們通過正常(pH 8)或老化(pH 12)形式的BSA自行氧化還原合成出螢光牛血清白蛋白(BSA)包覆金(Au)奈米團簇(BSA-AuNCs),其顯示分別是藍色和紅色螢光,並提出新的結構見解。
    首先使用MALDI-TOF可以得到低質量區域(<5000 Da)的Au簇信號(間距197 Da的訊號峰值)以及完整的BSA-AuNCs訊號(老化形式:MW~71k Da~25 Au和正常形式:MW~68k Da ~8 Au),再透過ESCA以及螢光光譜進一步確認形成了BSA包覆的Au奈米團簇。接著利用質譜和蛋白質體學技術發現甲硫胺酸、組胺酸和半胱胺酸為BSA-AuNCs中的主要氧化胺基酸,表明這三種胺基酸是BSA中主要負責還原Au離子的重要角色。
    BSA-AuNCs的金奈米團簇核心進一步通過酵素水解搭配10k Da分子篩分離進行結構的深入探討。我們發現通過TCEP打斷雙硫鍵時BSA-AuNCs_red螢光猝滅,表明其核心主要受這些二硫鍵的保護。在Cys.86,Cys.125,Cys.301,Cys.302,Cys.484,Cys.499這些位點的特異性氧化比例相當高,可以確定雙硫鍵在合成時斷裂 ; 相反,未氧化的半胱胺酸殘基:Cys 99,Cys 339,Cys 537則在BSA-AuNCs_red的核心部分中,數據表明伴隨蛋白質構型變化,誘導Au離子的氧化半胱胺酸造成雙硫鍵斷裂,打開BSA基板的空間使Au連接到完整的雙硫鍵片段並成核。與紅色AuNCs相比,藍色AuNCs具有較低程度的半胱胺酸氧化程度,且藍色螢光也未被TCEP猝滅,以上顯示金團簇核心主要不受半胱胺酸殘基的保護。我們的數據揭示了BSA-AuNCs在胜肽層級上的結構見解,這是以前從未報導過的,證實BSA的多個雙硫鍵在BSA-AuNCs_red的形成及穩定中起到重要作用。

    In this paper, we reported new structural insights on the fluorescent bovine serum albumin (BSA)−gold (Au) nanoclusters (BSA-AuNCs) synthesized by optimized method. Using MALDI-TOF, Au cluster signals (peaks with 197 Da-spacing) in the low mass region (<5000 Da) as well as intact ion signals (M.W.~71k Da ~25 Au for the aged form and M.W.~68k Da ~8 Au for the normal form) were detected, suggesting the formation of BSA-capsulated Au nanoclusters. Fluorescence and ESCA results also provide evidence of formation.
    Using mass spectrometry and proteomics techniques, methionine, histidine, and cysteine were identified to be main oxidized amino acid in BSA-AuNCs, suggesting these three amino acids were primarily responsible for the reduction of Au ion by BSA. By observing the oxidation state of Cys. site, we can find some disulfide bond fragments in the process of synthesis will break.
    The ligand protected nanocluster cores were further isolated by enzyme digestion and 10 kDa cut-off filtering. Site-specific oxidization was considered to break the disulfide linkage well as on the free Cys58 of the red BSA-AuNCs were identified mainly from the non-core fraction. In contrast, multiple non-oxidized cysteine residues: Cys99, Cys339, Cys537 were enriched in the core fraction of BSA-AuNCs_red which fluorescence was quenched upon disulfide cleavage by TCEP, suggesting BSA-AuNCs_red were mainly protected by these disulfide linkages. The data indicated protein conformational changes accompanied with Au ion-induced cysteine oxidation and disulfide cleavages make room for Au attachment to disulfide group. Compared to BSA-AuNCs_red, BSA-AuNCs_blue have lesser degree of cysteine oxidation and the Au core was not mainly protected by cysteine residues. The blue fluorescence was not quenched by TCEP either.
    Our data revealed structural insights of BSA-AuNCs at the residue level which has never been gained before. Multiple disulfide linkages of BSA were confirmed to play important roles in the red BSA-AuNCs formation and stabilization.

    致謝 I Abstract II 中文摘要 IV 英文延伸摘要 V 目錄 X 圖目錄 XIII 表目錄 XV 簡稱用與對應表 XVI 第一章 研究內容 1 1.1 研究動機 1 1.2 研究方向與策略 1 第二章 文獻回顧 3 2.1 牛血清蛋白 ( Bovine Serum Albumin,BSA ) 3 2.1.1 蛋白結構組成 3 2.1.2 構型變化 4 2.2 金奈米團簇介紹 4 2.2.1 合成基板 5 2.2.2 應用與前景 5 2.3 牛血清蛋白包覆金奈米團簇 ( BSA-Au nanoclusters) 6 2.3.1 合成方法 6 2.3.2 螢光性質 7 2.3.3 蛋白質包覆金奈米團簇結構分析 8 第三章 實驗方法 11 3.1 實驗藥品與耗材 11 3.1.1 實驗藥品 11 3.1.2 實驗耗材與儀器 11 3.2 牛血清蛋白包覆金奈米團簇的合成 12 3.2.1 合成藍光牛血清蛋白包覆金奈米團簇 12 3.2.2 合成紅光牛血清蛋白包覆金奈米團簇 13 3.3 基質輔助雷射脫附游離飛行式質譜儀(MALDI)的樣品製備 13 3.4 水解酵素法( In solution digestion ) 14 3.4.1 變性酵素水解法 ( Denatured digestion) 14 3.4.2 原態酵素水解法 ( Native digestion ) 14 3.5 奈米電噴灑線性離子阱式軌道阱質譜儀(LTQ-Orbitrap)的鑑定 15 3.6 數據分析軟體 16 3.7 螢光光譜儀的鑑定 16 3.8 化學分析電子光譜儀(ESCA)的鑑定 17 第四章 結果與討論 18 4.1 牛血清包覆金奈米團簇的合成後鑑定 18 4.1.1 基質輔助雷射脫附游離飛行式質譜儀(MALDI-TOF)分析 18 4.1.2 螢光光譜儀分析 21 4.1.3 化學分析電子光譜儀(ESCA)鑑定 23 4.2 酵素水解牛血清包覆金奈米團簇的性質 25 4.2.1 酵素水解後的MALDI-TOF性質鑑定 26 4.2.2 酵素水解後的螢光性質鑑定 27 4.3 由下而上(bottom-up)方法分析蛋白質基板 31 4.3.1 變性酵素水解法分析 31 4.3.2 原態酵素水解法分析 34 4.4 利用分子篩結合由下而上(bottom-up)酵素水解方法分析 37 4.4.1 上下層性質分析 38 4.4.2 由下而上(bottom-up)質譜分析 42 第五章 結論 45 第六章 參考文獻 47 附錄 52 Native digestion extract S-S status ( BSA-AuNCs_blue ) 52 Native digestion extract S-S status ( BSA-AuNCs_red ) 54 Base peaks chromatogram ( BSA-AuNCs_blue / red ) 57 BSA-AuNCs_blue coverage ~98% ( 10 k Da cut-off ) I BSA-AuNCs_red coverage : 100% ( 10 k Da cut-off ) XI

    1. Xie, J.; Zheng, Y.; Ying, J. Y., Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. Journal of the American Chemical Society 2009, 131 (3), 888-889.
    2. J, S. P.; Alan, T., pH‐induced structural transitions of bovine serum albumin. European Journal of Biochemistry 1993, 212 (3), 811-817.
    3. Givens, B. E.; Xu, Z.; Fiegel, J.; Grassian, V. H., Bovine serum albumin adsorption on SiO2 and TiO2 nanoparticle surfaces at circumneutral and acidic pH: A tale of two nano-bio surface interactions. Journal of Colloid and Interface Science 2017, 493, 334-341.
    4. Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R., Correlating the Crystal Structure of A Thiol-Protected Au25 Cluster and Optical Properties. Journal of the American Chemical Society 2008, 130 (18), 5883-5885.
    5. Zheng, J.; Nicovich, P. R.; Dickson, R. M., Highly Fluorescent Noble-Metal Quantum Dots. Annual Review of Physical Chemistry 2007, 58 (1), 409-431.
    6. Zheng, J.; Zhang, C.; Dickson, R. M., Highly Fluorescent, Water-Soluble, Size-Tunable Gold Quantum Dots. Physical Review Letters 2004, 93 (7), 077402.
    7. Wilcoxon, J. P.; Martin, J. E.; Parsapour, F.; Wiedenman, B.; Kelley, D. F., Photoluminescence from nanosize gold clusters. The Journal of Chemical Physics 1998, 108 (21), 9137-9143.
    8. Sardar, R.; Funston, A. M.; Mulvaney, P.; Murray, R. W., Gold Nanoparticles: Past, Present, and Future. Langmuir 2009, 25 (24), 13840-13851.
    9. Tao, Y.-T.; Wu, C.-C.; Eu, J.-Y.; Lin, W.-L.; Wu, K.-C.; Chen, C.-h., Structure Evolution of Aromatic-Derivatized Thiol Monolayers on Evaporated Gold. Langmuir 1997, 13 (15), 4018-4023.
    10. Harkness, K. M.; Cliffel, D. E.; McLean, J. A., Characterization of thiolate-protected gold nanoparticles by mass spectrometry. Analyst 2010, 135 (5), 868-74.
    11. Tkachenko, A. G.; Xie, H.; Coleman, D.; Glomm, W.; Ryan, J.; Anderson, M. F.; Franzen, S.; Feldheim, D. L., Multifunctional Gold Nanoparticle−Peptide Complexes for Nuclear Targeting. Journal of the American Chemical Society 2003, 125 (16), 4700-4701.
    12. Yang, T.; Li, Z.; Wang, L.; Guo, C.; Sun, Y., Synthesis, Characterization, and Self-Assembly of Protein Lysozyme Monolayer-Stabilized Gold Nanoparticles. Langmuir 2007, 23 (21), 10533-10538.
    13. Burt, J. L.; Gutiérrez-Wing, C.; Miki-Yoshida, M.; José-Yacamán, M., Noble-Metal Nanoparticles Directly Conjugated to Globular Proteins. Langmuir 2004, 20 (26), 11778-11783.
    14. Albrecht, M. A.; Evans, C. W.; Raston, C. L., Green chemistry and the health implications of nanoparticles. Green Chemistry 2006, 8 (5), 417-432.
    15. Goswami, N.; Saha, R.; Pal, S. K., Protein-assisted synthesis route of metal nanoparticles: exploration of key chemistry of the biomolecule. Journal of Nanoparticle Research 2011, 13 (10), 5485-5495.
    16. Hu, D.; Sheng, Z.; Gong, P.; Zhang, P.; Cai, L., Highly selective fluorescent sensors for Hg2+ based on bovine serum albumin-capped gold nanoclusters. Analyst 2010, 135 (6), 1411-1416.
    17. Retnakumari, A.; Setua, S.; Menon, D.; Ravindran, P.; Muhammed, H.; Pradeep, T.; Nair, S.; Koyakutty, M., Molecular-receptor-specific, non-toxic, near-infrared-emitting Au cluster-protein nanoconjugates for targeted cancer imaging. Nanotechnology 2010, 21 (5), 055103.
    18. Habeeb Muhammed, M. A.; Verma, P. K.; Pal, S. K.; Retnakumari, A.; Koyakutty, M.; Nair, S.; Pradeep, T., Luminescent Quantum Clusters of Gold in Bulk by Albumin‐Induced Core Etching of Nanoparticles: Metal Ion Sensing, Metal‐Enhanced Luminescence, and Biolabeling. Chemistry – A European Journal 2010, 16 (33), 10103-10112.
    19. Wang, X.; Wu, P.; Lv, Y.; Hou, X., Ultrasensitive fluorescence detection of glutaraldehyde in water samples with bovine serum albumin-Au nanoclusters. Microchemical Journal 2011, 99 (2), 327-331.
    20. Le Guével, X.; Hötzer, B.; Jung, G.; Hollemeyer, K.; Trouillet, V.; Schneider, M., Formation of Fluorescent Metal (Au, Ag) Nanoclusters Capped in Bovine Serum Albumin Followed by Fluorescence and Spectroscopy. The Journal of Physical Chemistry C 2011, 115 (22), 10955-10963.
    21. Wei, H.; Wang, Z.; Yang, L.; Tian, S.; Hou, C.; Lu, Y., Lysozyme-stabilized gold fluorescent cluster: Synthesis and application as Hg2+ sensor. Analyst 2010, 135 (6), 1406-1410.
    22. Shao, C.; Yuan, B.; Wang, H.; Zhou, Q.; Li, Y.; Guan, Y.; Deng, Z., Eggshell membrane as a multimodal solid state platform for generating fluorescent metal nanoclusters. Journal of Materials Chemistry 2011, 21 (9), 2863-2866.
    23. Le Guevel, X.; Daum, N.; Schneider, M., Synthesis and characterization of human transferrin-stabilized gold nanoclusters. Nanotechnology 2011, 22 (27), 275103.
    24. Xavier, P. L.; Chaudhari, K.; Verma, P. K.; Pal, S. K.; Pradeep, T., Luminescent quantum clusters of gold in transferrin family protein, lactoferrin exhibiting FRET. Nanoscale 2010, 2 (12), 2769-2776.
    25. Kawasaki, H.; Yoshimura, K.; Hamaguchi, K.; Arakawa, R., Trypsin-Stabilized Fluorescent Gold Nanocluster for Sensitive and Selective Hg<sup>2+</sup> Detection. Analytical Sciences 2011, 27 (6), 591-591.
    26. Kawasaki, H.; Hamaguchi, K.; Osaka, I.; Arakawa, R., ph‐Dependent Synthesis of Pepsin‐Mediated Gold Nanoclusters with Blue Green and Red Fluorescent Emission. Advanced Functional Materials 2011, 21 (18), 3508-3515.
    27. Purushothaman, B.; Bruzek, M.; Parkin Sean, R.; Miller, A. F.; Anthony John, E., Inside Cover: Synthesis and Structural Characterization of Crystalline Nonacenes (Angew. Chem. Int. Ed. 31/2011). Angewandte Chemie International Edition 2011, 50 (31), 6932-6932.
    28. Wen, F.; Dong, Y.; Feng, L.; Wang, S.; Zhang, S.; Zhang, X., Horseradish Peroxidase Functionalized Fluorescent Gold Nanoclusters for Hydrogen Peroxide Sensing. Analytical Chemistry 2011, 83 (4), 1193-1196.
    29. Chevrier, D. M.; Chatt, A.; Zhang, P. In Properties and applications of protein-stabilized fluorescent gold nanoclusters: short review, SPIE: 2012; p 17.
    30. Govindaraju, S.; Ankireddy, S. R.; Viswanath, B.; Kim, J.; Yun, K., Fluorescent Gold Nanoclusters for Selective Detection of Dopamine in Cerebrospinal fluid. Sci Rep 2017, 7, 40298.
    31. Methionine-directed fabrication of gold nanoclusters with yellow fluorescent emission for Cu2+ sensing. Biosensors and Bioelectronics 2015, 65, 397.
    32. Wen, X.; Yu, P.; Toh, Y.-R.; Hsu, A.-C.; Lee, Y.-C.; Tang, J., Fluorescence Dynamics in BSA-Protected Au25 Nanoclusters. The Journal of Physical Chemistry C 2012, 116 (35), 19032-19038.
    33. Zhong, Z.; Patskovskyy, S.; Bouvrette, P.; Luong, J. H. T.; Gedanken, A., The Surface Chemistry of Au Colloids and Their Interactions with Functional Amino Acids. The Journal of Physical Chemistry B 2004, 108 (13), 4046-4052.
    34. Willett, R. L.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N., Differential adhesion of amino acids to inorganic surfaces. Proceedings of the National Academy of Sciences 2005, 102 (22), 7817.
    35. Brown, S.; Sarikaya, M.; Johnson, E., A genetic analysis of crystal growth11Edited by M. Gottesman. Journal of Molecular Biology 2000, 299 (3), 725-735.
    36. Tan, Y. N.; Lee, J. Y.; Wang, D. I. C., Uncovering the Design Rules for Peptide Synthesis of Metal Nanoparticles. Journal of the American Chemical Society 2010, 132 (16), 5677-5686.
    37. Chaudhari, K.; Xavier, P. L.; Pradeep, T., Understanding the Evolution of Luminescent Gold Quantum Clusters in Protein Templates. ACS Nano 2011, 5 (11), 8816-8827.
    38. Wangoo, N.; Suri, C. R.; Shekhawat, G., Interaction of gold nanoparticles with protein: A spectroscopic study to monitor protein conformational changes. Applied Physics Letters 2008, 92 (13), 133104.
    39. Parker, J. F.; Fields-Zinna, C. A.; Murray, R. W., The Story of a Monodisperse Gold Nanoparticle: Au25L18. Accounts of Chemical Research 2010, 43 (9), 1289-1296.
    40. Harkness, K. M.; Cliffel, D. E.; McLean, J. A., Characterization of thiolate-protected gold nanoparticles by mass spectrometry. Analyst 2010, 135 (5), 868-874.
    41. Chaki, N. K.; Negishi, Y.; Tsunoyama, H.; Shichibu, Y.; Tsukuda, T., Ubiquitous 8 and 29 kDa Gold:Alkanethiolate Cluster Compounds: Mass-Spectrometric Determination of Molecular Formulas and Structural Implications. Journal of the American Chemical Society 2008, 130 (27), 8608-8610.
    42. Xavier Le, G.; Nicole, D.; Marc, S., Synthesis and characterization of human transferrin-stabilized gold nanoclusters. Nanotechnology 2011, 22 (27), 275103.
    43. Insulin-Directed Synthesis of Fluorescent Gold Nanoclusters: Preservation of Insulin Bioactivity and Versatility in Cell Imaging. Angewandte Chemie 2011, n/a.
    44. Negishi, Y.; Nobusada, K.; Tsukuda, T., Glutathione-Protected Gold Clusters Revisited:  Bridging the Gap between Gold(I)−Thiolate Complexes and Thiolate-Protected Gold Nanocrystals. Journal of the American Chemical Society 2005, 127 (14), 5261-5270.
    45. Russell, B. A.; Kubiak-Ossowska, K.; Mulheran, P. A.; Birch, D. J.; Chen, Y., Locating the nucleation sites for protein encapsulated gold nanoclusters: a molecular dynamics and fluorescence study. Phys Chem Chem Phys 2015, 17 (34), 21935-41.
    46. Dixon, J. M.; Egusa, S., Conformational Change-Induced Fluorescence of Bovine Serum Albumin-Gold Complexes. J Am Chem Soc 2018, 140 (6), 2265-2271.
    47. Yu, Y.; Luo, Z.; Teo, C. S.; Tan, Y. N.; Xie, J., Tailoring the protein conformation to synthesize different-sized gold nanoclusters. Chem Commun (Camb) 2013, 49 (84), 9740-2.
    48. <Denaturation Mechanism of BSA by Urea Derivatives Evidence for Hydrogen-Bonding Mode from Fluorescence Tools.pdf>.
    49. <Fluorescence Spectroscopy A tool for Protein folding,unfolding Study.pdf>.
    50. Ghisaidoobe, A. B. T.; Chung, S. J., Intrinsic Tryptophan Fluorescence in the Detection and Analysis of Proteins: A Focus on Förster Resonance Energy Transfer Techniques. International Journal of Molecular Sciences 2014, 15 (12), 22518-22538.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE