| 研究生: |
鍾明峰 Chung, Ming-Feng |
|---|---|
| 論文名稱: |
氧化鋁/水奈米流體流經具頂板間隙之毫米矩形熱沉對流熱散逸特性研究 Convection heat dissipation characteristics of Al2O3-water nanofluid flow in a mini-channel heat sink with ceiling gap |
| 指導教授: |
何清政
Ho, Ching-Jenq |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 頂板間隙 、毫米流道熱沉 、奈米流體 |
| 外文關鍵詞: | Ceiling gap, Mini-channel heat sink, Nanofluids |
| 相關次數: | 點閱:53 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文旨在以實驗量測方式探討在無/具頂板間隙之毫米流道熱沉流過包含純水與奈米流體等兩種不同工作流體的強制對流熱傳特性。實驗所製作的毫米流道熱沉之材料為紅銅,共有12條寬1mm、高3mm、長50mm的流道,熱沉與上蓋形成之單一流道水力直徑分別為1.5mm、1.33mm、1.45mm、1.56mm。毫米流道熱沉底部黏置加熱片以模擬等熱通量加熱邊界條件,強制對流實驗之雷諾數範圍介於329至1280之間。本文使用的奈米流體內含奈米氧化鋁顆粒之質量濃度為0%、5%、10%。純水之熱傳實驗結果顯示:相較於無頂板間隙之熱沉來說,具頂板間隙之熱沉在平均熱對流係數增益最高為15%;且其壓降最大降幅為65%。另一方面,奈米流體之熱傳實驗結果顯示:相較於無頂板間隙之熱沉來說,具頂板間隙之熱沉在平均熱對流係數增益最高為10%;且其壓降最大降幅為60%。綜合評估純水/奈米流體(ω_np=5%、10%)顯示,當通重量濃度為5%之奈米流體時,無/具頂板間隙模組之壁溫相較於通純水來說皆有明顯下降;當重量濃度提高至10%時,各模組在壁溫抑制的效果皆有不同結果。流動特性方面,各模組流阻值皆與雷諾數及重量濃度成正比關係,雷諾數越高時模組之頂板間隙高度提升所導致的流阻值下降更明顯,最低為10(MW/"m" ^"6" )。
The purpose of this paper is to investigate the forced convection heat transfer characteristics of two different working fluids including pure water and nanofluid in the mini-channel heat sink without/with ceiling gap by experimental measurement. The material of the mini-channel heat sink is red copper. There are 12 channels with a width of 1mm, a height of 3mm and a length of 50mm. The single channel has hydraulic diameter of 1.5 mm, 1.33 mm, 1.45 mm, and 1.56 mm, respectively. The heater was placed on the bottom of the mini-channel heat sink to simulate constant heat flux heating boundary conditions, and the Reynolds number of the forced convection experiment ranged from 329 to 1280. The nanofluids used in experiment have a mass concentration of 0%, 5%, and 10%. The experimental results of pure water show that the heat sink with the ceiling gap has a maximum gain of 15% on the average heat convection coefficient compared with the heat sink without ceiling gap. The maximum drop in pressure drop is 65%. On the other hand, The experimental results of nanofluid show that the heat sink with the ceiling gap has a maximum gain of 10% on the average heat convection coefficient compared with the heat sink without the ceiling gap. The maximum drop in pressure drop is 60%.
[1]D. B. Tuckerman, and R. Pease, “High-performance heat sinking for VLSI,” Electron Device Letters, IEEE, vol. 2, no. 5, pp. 126-129, 1981.
[2]W. Qu, and I. Mudawar, “Experimental and numerical study of pressure drop and heat transfer in a single- phase micro-channel heat sink,” International Journal of Heat and Mass Transfer, vol. 45, no. 12, pp. 2549- 2565, 2002.
[3]Lee, P.S.,“Thermally Developing Flow and Heat Transfer in Rectangular Microchannels of Different Aspect Ratios,” International Journal of Heat and Mass Transfer, vol. 49, no. 3, pp. 3060-3067, 2005.
[4]J. Lee, and I. Mudawar,“Assessment of the effectiveness of nanofluids for single-phase and two- phase heat transfer in micro-channels,” International Journal of Heat and Mass Transfer, vol. 50, no. 3, pp. 452-463, 2007.
[5]C.-J. Ho, L. Wei, and Z. Li,“An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid,” Applied Thermal Engineering, vol. 30, no. 2, pp. 96-103, 2010.
[6]鄭偉成,“毫米流道熱沉孔內奈米微粒/相變化微膠囊懸浮液之強制對 流特性研究,”成功大學機械工程學系學位論文, pp. 1-114, 2010.
[7]Tun-Ping Teng, Yi-Hsuan Hung, and Tun-Chien Teng,“The effect of alumina/water nanofluid particle size on thermal conductivity,” Applied Thermal Engineering, vol. 30, pp. 2213-2218, 2010.
[8]I. M. Mahbubul, Tet Hien Chong, and S. S. Khaleduzzaman,“Effect of Ultrasonication Duration on Colloidal Structure and Viscosity of Alumina−Water Nanofluid,” American Chemical Society, vol. 53, pp. 6677-6684, 2014.
[9]Nizar Bouguerra, Sébastien Poncet, and Said Elkoun,“Dispersion regimes in alumina/water-based nanofluids: Simultaneous measurements of thermal conductivity and dynamic viscosity,” International Communications in Heat and Mass Transfer, vol. 92, pp. 51-55, 2018.
[10]謝育杰,“具潛熱冷卻頂板毫米矩形流道熱沉內氧化鋁-水奈米流體 熱散逸性能實驗研究,”成功大學機械工程學系學位論文, pp. 1- 101, 2017.
[11]Jung Yim Min, Seok Pil Jang, and Sung Jin Kim,“Effect of tip clearance on the cooling performance of a microchannel heat sink,” International Journal of Heat andMass Transfer, vol. 47, pp. 1099-1103, 2004.
[12]Kevin A. Moores, Jungho Kim, and Yogendra K.
Joshi,“Heat transfer and fluid flow in shrouded pin fin arrays with and without tip clearance,” International Journal of Heat and Mass Transfer, vol. 52, pp. 5978-5989, 2009.
[13]Liu Zhigang, Guan Ning, and Zhang Chengwu,“Influence of tip clearance on heat transfer efficiency in micro-cylinders-group heat sink,” Experimental Thermal and Fluid Science, vol. 46, pp. 64-73, 2013.
[14]F. Sastre, A. Valeije, and E. Martin,“Experimental and numerical study on the flow topology of finned heat sinks with tip clearance,” International Journal of Thermal Sciences, vol. 132, pp. 146-160, 2018.