| 研究生: |
林傑仁 Lin, Chieh-Jen |
|---|---|
| 論文名稱: |
建築設計隱含知識呈現之研究:以住宅案例庫中的空間資訊探勘為例 A Study on Representation of Implicit Knowledge of Architectural Design: Spatial Information Mining in a House Case Library as Examples |
| 指導教授: |
鄭泰昇
Jeng, Tay-Sheng 邱茂林 Chiu, Mao-Lin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 172 |
| 中文關鍵詞: | 案例庫 、隱含知識 、知識本體論 、空間資訊 、資料探勘 |
| 外文關鍵詞: | case library, implicit knowledge, ontology, spatial information, data mining |
| 相關次數: | 點閱:84 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
建築設計不僅是解決問題的活動,也是學習的過程。無論是學生或建築師,設計案例都是學習上重要的媒介。案例式設計的基本想法,即是提供類似的案例,作為學習如何解決新問題的基礎。學習新知的關鍵不在案例的新舊,而在於如何重新詮釋案例中已知的解答,建立與新問題之間有意義的連結。過去的研究多以問題的相似性為基礎,著重於案例擷取、選擇與調適等機制,而忽略了如何從案例中學習設計知識。原因除了技術上的問題,主要還是由於案例中隱含的設計知識,難以事先明確地定義與編碼,成為建置案例庫時主要的“知識瓶頸”。
為克服案例庫的知識瓶頸,本研究應用基於“知識本體”的知識呈現,結合資料探勘技術,提出以視覺化方式呈現案例庫中隱含設計知識的理論架構。知識本體論是人工智慧研究中以正規形式呈現知識的理論與方法,目的在促進知識的分享與利用。知識本體著重在知識實體之間語義關係的建立,但缺少建築設計必要的圖像知識,如空間拓樸與幾何資訊間的轉換與驗證機制。因此本研究藉由實作視覺化的拓樸編碼工具,解決知識本體語義資訊與圖像知識連結上的問題。
本研究步驟,分為文獻回顧、方法建立、系統實作與驗證三個階段。藉由(1)以知識本體論為基礎的案例庫開發、(2)以視覺化為基礎的圖像知識呈現與驗證的演算法、(3)應用文字探勘方法獲取隱含設計知識,進行主要研究課題的探討。本論文的研究成果包括:
1. 基於關鍵字詞的設計知識搜尋與檢索機制:應用文字探勘技術,結合知識本體論方法,本研究提出建立設計案例的關鍵字詞與設計議題之間的語意聯想的架構。並藉由視覺化呈現,協助使用者發現案例文字資訊中隱含的設計知識。
2. 基於知識本體論的案例庫開發理論:應用知識本體論的方法,本研究提出開放式的案例庫詮釋資料架構。目的在解決應用資料庫技術開發案例庫時,詮釋資料之間缺乏語義關連性,無法協助學習與應用設計知識的問題。
3. 以視覺化為基礎的圖像知識呈現與驗證演算法:本研究提出以應用視覺化技術,圖像式編碼與呈現設計知識的方法。以住宅平面圖的空間資訊為例,本研究探討轉換圖像資訊,與驗證知識本體的演算法,以解決知識本體與圖像知識之間,難以轉換與驗證的問題。住宅平面圖的空間資訊編碼結果,可以作為進一步探勘住宅空間配置的設計樣型的基礎。
透過本研究的成果,以及系統開發實作與測試的經驗,本研究對於案例庫隱含知識的呈現進行分析與建議,包括:(1)基於關鍵字詞的設計知識搜尋機制;(2)基於知識本體的案例庫的詮釋資料;(3)設計案例中的圖像知識;與(4)圖像知識的視覺化擷取介面,提出改善的觀點與建議。
Architectural design is not only a problem-solving activity, but also a learning process. For both students and architects, design cases are important media for learning. Case-based design (CBD) therefore promises to provide cases, which are similar to new problems, as the foundation of learning how to solve the problems. However, the key for learning lies not in the newness of the cases, but in the reinterpretation of known solutions to make meaningful connections among solutions and problems. Past CBD researches focused on retrieval, selection and adaption of cases based on similarity among present and past problems, but ignored how to learn knowledge from cases. Except technical reasons, this disadvantage is because that design knowledge is implicit, and difficult to be clearly defines and encoded beforehand, therefore causes the “knowledge bottleneck” of developing a case library.
For overcoming the bottleneck, this study applies ontology-based representation, combining data-mining techniques, to establish a theoretical framework for visualizing implicit knowledge of a case library. Ontology is a theory and approach of formally representing knowledge in artificial intelligent research, and aims to facilitate sharing and reusing knowledge. Ontology focuses on establishing semantic relations among knowledge entities, but lacks of necessary graphic knowledge of architectural design, such as translating and validating mechanism among topological and geometric information. This study therefore implements a visually encoding tool of spatial topology, which can help to link semantic topology with graphic knowledge.
This study is divided into three sections: literature review; approach and methodology; implementation and verification of the system. This study explores relevant issues through the surveys of: (1) development of an ontology-based case library, (2) visualization-based algorithm for representing graphic knowledge and validating its ontology, and (3) acquiring implicit knowledge by applying text-mining technique. Research results of this study include:
1. A keyword-based search and index mechanism of design knowledge: By applying text mining technique, combining ontology-based method, this study proposes a framework for the establishment of semantic associations between keywords of case’s textual information and relevant design issues. Via the visualization of semantic associations, the visual interface can help users to discover implicit design knowledge within textual information of design cases.
2. A theory for developing an ontology-based case library: By applying ontology techniques, this study proposes a case library named “Open Case Study” (OCS), which has an open authoring tool of metadata named “open ontology.” OCS aims to solve the problem of learning and applying design knowledge in a case library, which it is developed by relational database technology therefore usually loses semantic associations among metadata.
3. Graphic-based knowledge representation and validating algorithm: Via visualizing techniques, this study proposes a graphical approach to encoding and representing knowledge. Using the spatial information of residential floor plans as examples, this study investigates the algorithm for translating graphic information and validating their ontology. It aims to solve the problems of translation and validation between ontological and graphical knowledge. The encoded spatial information of house plans can server as the foundations for further mining the design patterns from house’s spatial layouts.
Through the results of this study and the experiences derived from developing and implementing systems, this study proposes the following suggestions for the analysis and discussions of representing the implicit knowledge of a case library: (1) the keyword-based search mechanism of design knowledge; (2) ontology-based metadata of a case library; (3) graphic information of design case; and (4) visual interface of graphic knowledge retrieval.
1. Aamodt, A., & Plaza, E. Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches. AI Communications, 7(1), pp. 39-59, 1994.
2. Ackoff, R. L. From Data to Wisdom. Journal of Applied Systems Analysis, 16, pp. 3-9, 1989.
3. Aksamija, A., & Iordanova, I. Computational Environments with Multimodal Representations of Architectural Design Knowledge. International Journal of Architectural Computing, 8(4), pp. 439-460, 2010.
4. Alexander, C., Ishikawa, S., & Silverstein, M. A Pattern Language: Towns, Buildings, Construction. Oxford University Press, New York, 1977.
5. Ambrosini, V., & C.Bowman. Tacit Knowledge: Some Suggestions for Operationalization. Journal of Management Studies, 38(6), pp. 811-829, 2001.
6. Antoniou, G., & Van Harmelen, F. A Semantic Web primer. MIT Press, Cambridge, 2004.
7. Arvin, S. A., & House, D. H. Modeling Architectural Design Objectives in Physically Based Space Planning. Automation in Construction, 11(2), pp. 213-225., 2002.
8. Baeza-Yates, R., & Ribeiro-Neto, B. Modern Information Retrieval. Addison Wesley, New York, 1999.
9. Bakhtari, S., & Oertel, W. DOM: An Active Assistance System for Architectural and Engineering Design. Proceedings of the CAAD Future, pp. 153-162, 1995.
10. Bass, L., Clements, P., & Kazman, R. Software Architecture in Practice (Second ed.). Addison-Wesley, Boston MA, 2005.
11. Benbya, H. Knowledge Management Systems Implementation: Lessons from the Silicon Valley. Chandos, Oxford, 2008.
12. Berry, M. J. A., Linoff, G. S., 吳旭智、賴淑貞(譯)。《資料採礦理論與實務:顧客關係管理的技巧與科學》。維科出版社, 台北市, 2001.
13. Boling, E. The Need for Design Cases: Disseminating Design Knowledge. International Journal of Designs for Learning, 1(1), pp. 1-8, 2010.
14. Chen, C.-C. Analogical and inductive reasoning in architectural design computation. Unpublished PhD Dissertation, ETH Zurich, Zurich 1991.
15. Chiang, R. H. L., Chua, C. E. H., & Storey, V. C. A smart web query method for semantic retrieval of web data. Data & Knowledge Engineering, 38, pp. 63-84, 2001.
16. Chiu, M.-L., & Shih, S.-G. Analogical Reasoning and Case Adaptation in Architectural Design: Computers Vs. Human Designers. Proceedings of the CAAD Futures '97, pp. 787-800, 1997.
17. Ciftcioglu, Ö., & Durmisevic, S. Knowledge management by information mining. Proceedings of the CAAD Futures 2001, pp. 533-545, 2001.
18. Coulon, C.-H. Automatic Indexing, Retrieval and Reuse of Topologies in Architectural Layouts. Proceedings of the CAAD Futures '95, pp. 577-586, 1995.
19. Dave, B., Schmitt, G., Faltings, B., & Smith, I. Case-based design in Architecture. Proceedings of the Artificial Intelligence in Design '94, pp. 145-162, 1994.
20. Domeshek, E., & Kolodner, J. A Case-Based Design Aid for Architecture. Proceedings of the the Second International Conference on Artificial Intelligence and Design, pp. 497-516, 1992.
21. Eastman, C. M. Building Product Models: Computer Environments Supporting Design and Construction. CRC Press, Boca Raton, FLA, 1999.
22. Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. From Data Mining to Knowledge Discovery in Databases. AI Magazine, 17(3), pp. 37-54, 1996.
23. Fensel, D. Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce. Springer-Verlag, New York, 2003.
24. Flemming, U., & Chien, S. F. Schematic Layout Design in SEED Environment. Journal of Architectural Engineering, 1(4), pp. 162-169, 1995.
25. Gao, F., Li, M., & Clarke, S. Knowledge, management, and knowledge management in business operations. Journal of Knowledge Management, 12(2), pp. 3-17, 2008.
26. Gero, J. S. Design Prototypes : A Knowledge Representation Schema for Design. AI Magazine, 11, pp. 26-36, 1990.
27. Gross, M. D. Design as exploring constraints. Unpublished PhD Dissertation, Massachusetts Institute of Technology, Boston, MA, 1986.
28. Gross, M. D. Grids in Design and CAD. Proceedings of the ACADIA '91, pp. 33-43, 1991.
29. Gross, M. D. The Electronic Cocktail Napkin – a computational environment for working with design diagrams. Design Studies, 17(1), pp. 53-69, 1996.
30. Gruber, T. R. A translation approach to portable ontology specifications. Knowledge Acquisition, 5, pp. 199-200, 1993.
31. Harada, M., Witkin, A., & Baraff, D. Interactive Physically-Based Manipulation
32. of Discrete/Continuous Models. Proceedings of the SIGGRAPH 95, pp. 1-10, 1995.
33. Heylighen, A., Casaer, M., & Neuckermans, H. UnaWare: supporting tacit design knowledge exchange. International Journal of Web-Based Communities, 2(1), pp. 31-44, 2006.
34. Heylighen, A., Heylighen, F., Bollen, J., & Casaer, M. A distributed model for tacit design knowledge exchange. Proceedings of the the 4th Social Intelligence Design Workshop (SID 2005), pp., 2005.
35. Heylighen, A., & Neuckermans, H. Learning from Experience: Promises, Problems and Side-effects of CBD in Architecture. Proceedings of the eCAADe '99: Architectural Computing from Turing to 2000, pp. 567-575, 1999.
36. Heylighen, A., & Neuckermans, H. DYNAMO in Action - Development and Use of a Web-Based Design Tool. Proceedings of the Focus Symposium on Advances in Computer-Based and Web-Based Collaborative Systems - InterSymp-2000 International Conference On Systems Research, Informatics and Cybernetics, pp. 233-242, 2000.
37. Heylighen, A., & Neuckermans, H. A case base of Case-Based Design tools for architecture. Computer-Aided Design, 33(14), pp. 1111-1122, 2001.
38. Hildreth, P. M., & Kimble, C. The duality of knowledge. Information Research, 8(1), pp., 2002.
39. Hillier, B. Space Is the Machine: A Configurational Theory of Architecture. Cambridge University Press, New York, 1996.
40. Howell, I., & Batcheler, B. Building Information Modeling Two Years Later – Huge Potential, Some Success and Several Limitations. 2005. Retrieved from http://www.laiserin.com/features/bim/newforma_bim.pdf
41. Hua, K., & Faltings, B. Exploring case-based building design—CADRE. Artificial Intelligence for Engineering, Design, Analysis and Manufacturing, 7(2), pp. 135-143, 1993.
42. Hwang, J.-E., & Choi, J.-W. SpaceScope: Spatial Content-Based Retrieval of Architectural Floor Plans. Proceedings of the CAAD Futures 2003, pp. 53-62, 2003.
43. Jones, J. C., 張建成(譯)。《設計方法》。六和出版社, 台北市, 1994.
44. Kavakli, M., & Gero, J. S. Difference between expert and novice designers: an experimental study. In U. Lindemann (Ed.), Human Behaviour in Design (pp. 42-51). Springer, Berlin, 2003.
45. Kolodner, J. L. Case-based reasoning. Morgan Kaufmann Publishers, San Mateo, CA, 1993.
46. Kolodner, J. L., & Leake, D. B. A Tutorial Introduction to Case-Based Reasoning. In D. B. Leake (Ed.), Case-based reasoning: experiences, lessons & future directions. (pp. 31-65). AAAI Press, Menlo Park, CA., 1996.
47. Lai, I.-C. Dynamic Linkages between Ideas and Cases-Toward a computational approach for supporting idea association during brainstorming. Proceedings of the Developments in Design & Decision Support Systems in Architecture and Urban Planning, pp. 225-238, 2004.
48. Lai, I. C. Dynamic Idea-Maps: A Framework for Linking Ideas with Cases during Brainstorming. International Journal of Architectural Computing, 4(3), pp. 429-447, 2005.
49. Li, M., & Gao, F. Why Nonaka highlights tacit knowledge: a critical review. Journal of Knowledge Management, 7(4), pp. 6-14, 2003.
50. Li, Y., Lertlakkhanakul, J., Lee, S., & Choi, J. Design with space syntax analysis based on building information model: Towards an interactive application of building information model in early design process. Proceedings of the The 13th International CAAD Futures Conference (CAADFutures 2009), pp. 501-514, 2009.
51. Lin, C.-J. Topology pattern mining: A visual approach for representing and retrieving design patterns of spatial topology in a case library. Proceedings of the CAADRIA 2011, pp. 535-544, 2011.
52. Lin, C.-J., & Chiu, M.-L. Information Mining within a Case Library Visual Links of Correlation among Cases. Proceedings of the CAADRIA 2003, pp. 249-262, 2003a.
53. Lin, C.-J., & Chiu, M.-L. Smart Semantic Query of Design Information in a Case Library. Proceedings of the CAAD Futures 2003: Digital Design - Research and Practice, pp. 125-136, 2003b.
54. Lin, C.-J., & Chiu, M.-L. The Concept Space Explorer. Proceedings of the CAAD Futures 2005: Learning from the Past a Foundation for the Future, Special publication of papers presented at the CAAD futures 2005 conference held at the Vienna University of Technology, pp. 139-148, 2005a.
55. Lin, C.-J., & Chiu, M.-L. Ontology Based Design Knowledge Detective Agent. Proceedings of the CAADRIA 2005, pp. 239-250, 2005b.
56. Lin, C.-J., & Chiu, M.-L. Open Ontology: A Self-Organizing Tool for Knowledge Acquisition in a Case Library. Proceedings of the CAADRIA 2008, pp. 328-334, 2008.
57. Lin, C.-J., & Chiu, M.-L. Spatial Topology Retrieval: A Visual Approach for Encoding and Indexing Spatial Topology in an Architectural Design Case Library. Proceedings of the GCIS 2010: The 2010 Second WRI Global Congress on Intelligent Systems, pp. 125-132, 2010.
58. Liu, S., & Parmelee, M. Introduction to Knowledge Management. 2002. Retrieved from http://www.unc.edu/~sunnyliu/inls258/Introduction_to_Knowledge_Management.html
59. Maher, M. L., Balachandran, M., & Zhang, D. M. Case-based reasoning in design. Lawrence Erlbaum Associates, 1995.
60. Maher, M. L., & Gomez de Silva Garza, A. Case-based reasoning in design. IEEE Expert 12(2), pp. 34-41, 1997.
61. Neuckermans, H., Heylighen, A., & Morisse, P. Visual Keys to Architectural Design. Proceedings of the CAADRIA pp. 175-182, 2002.
62. Nonaka, I., & Takeuchi, H. The Knowledge-Creating Company: How Japanese Companies Create the Dynamics of Innovation. Oxford University Press, New York, 1995.
63. O'Reilly, T. What is Web 2.0 - Design Patterns and Business Models for the Next Generation of Software. 2005. Retrieved from http://oreilly.com/web2/archive/what-is-web-20.html
64. Oxman, R. Design Case Bases: Graphic Knowledge Bases for the Design Workspace. Proceedings of the CAAD Futures '95, pp. 555-565, 1995.
65. Oxman, R., & Heylighen, A. A Case with a View - Towards an Integration of Visual and Case-Based Reasoning in Design. Proceedings of the 19th eCAADe: Architectural Information Management, pp. 346-341, 2001.
66. Oxman, R., & Oxman, R. Precedents: Memory Structure in Design Case Libraries. Proceedings of the CAAD Futures ‘93, pp., 1993.
67. Oxman, R., Sarid, A., Bar-Eli, S., & Rotenshtreich, R. A Conceptual Network for Web Representation of Design Knowledge. Proceedings of the CAAD Futures, pp. 453-473, 1997.
68. Polanyi, M. The Tacit Dimension. Routledge & Kegan Paul, London, 1996.
69. Qian, L., & Gero, J. S. Function-behaviour-structure paths and their role in analogy based design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 10, pp. 289-312, 1996.
70. Reas, C., & Fry, B. Processing: A Programming Handbook for Visual Designers and Artists. MIT Press, Cambridge, 2007.
71. Reitman, W. R. Cognition and Thought: an Information-Processing Approach. John Wiley & Sons, New York, 1965.
72. Rigaux, P., Scholl, M. O., & Voisard, A. Spatial Databases: With Application to GIS. Morgan Kaufmann, San Francisco, 2002.
73. Roiger, R., & Geatz, M. Data mining: a tutorial-based primer. Addison Wesley, Boston, 2003.
74. Russell, S. J., & Norvig, P. Artificial intelligence: a modern approach (2nd ed.). Pearson Education, Upper Saddle River, N.J., 2003.
75. Russell, S. J., & Norvig, P. Artificial intelligence: a modern approach (3rd ed.). Prentice Hall, Upper Saddle River, N.J., 2010.
76. Schon, D. Design Studio. RIBA Publications, London, 1984.
77. Simon, H. A. The Sciences of the Artificial (3rd ed.). MIT Press, Cambridge, MA., 1996.
78. Steijns, Y., & Koutamanis, A. Representation and Typological Refinement in a Case-base. Proceedings of the 23rd eCAADe, Digital Design: The Quest for New Paradigms, pp. 837-844, 2005.
79. Studer, R., Benjamins, V. R., & Fensel, D. Knowledge engineering: principles and methods. Data & Knowledge Engineering, 25(1-2), pp. 161-197, 1998.
80. Tan, P. N., Steinbach, M., & Kumar, V. Introduction to Data Mining. Addison-Wesley, Boston, 2005.
81. Thagard, P. Mind: introduction to cognitive science. MIT Press, Cambridge, MA, 2005.
82. Visser, W. Simon: Design as a Problem-Solving Activity. Collection, 2, pp. 11-16, 2010.
83. Voß, A., Coulon, C.-H., Gräther, W., Linowski, B., Schaaf, J., Bartsch-Spörl, B., et al. Retrieval of similar layouts - about a very hybrid approach in FABEL. Proceedings of the Artificial intelligence in design '94, pp. 625-640, 1994.
84. Watson, I., & Perera, S. Case-based design: A review and analysis of building design applications. AIEDAM, 11(01), pp. 59-87, 1997.
85. Wekipedia. Web content management system. 2011. Retrieved from http://en.wikipedia.org/wiki/Web_content_management_system
86. White, E. T. Space Adjacency Analysis: Diagramming Information for Architectural Design. Architectural Media LTD, Tucson, Ariz, 1986.
87. White, E. T., 林政達,張建成(譯) 。《空間鄰接性分析》。六和出版社, 台北市, 1999.
88. Witten, I. H., & Frank, E. Data Mining – Practical Machine Learning Tools and
89. Techniques with JAVA Implementations. Morgan Kaufmann, San Francisco, CA, 2000.
90. Woo, J.-H., Clayton, M., Johnson, R., & Flores, B. Case Study of Tacit Knowledge Sharing in a Distributed Design Studio. Proceedings of the the 2003 Annual Conference of the Association for Computer Aided Design In Architecture (ACADIA 2003: Connecting >> Crossroads of Digital Discourse), pp. 107-116, 2003.
91. Woo, J.-H., Clayton, M. J., Johnson, R. E., Flores, B. E., & Ellis, C. Dynamic Knowledge Map: reusing experts’ tacit knowledge in the AEC industry. Automation in Construction, 13, pp. 203-207, 2004.
92. 王明蘅。《案例式設計資訊系統》(國科會專題研究計畫 No. NSC83-0410-E006-028), 1995.
93. 王明蘅。《案例式設計與推理在建築應用之研究-子計畫II: 設計中案例運用之行為研究》(國科會專題研究計畫 No. NSC86-2221-E-006-052), 1997.
94. 王明蘅, 邱茂林, 劉育東。《建築設計原案資料之建立與分析研究---總計畫》 (國科會專題研究計畫 No. NSC88-2211-E006-053), 1999.
95. 安藤忠雄, 龍國英(譯)。《建築家安藤忠雄》。商周出版, 台北市, 2009.
96. 邱茂林。〈電腦輔助建築設計之研究方向探討〉。《建築學報》, 16, pp. 115-128, 1996.
97. 邱茂林(編)。《CAAD Talks 2: 設計運算向度 Dimensions of Design Computation》。田園城市 台北市, 2003.
98. 邱茂林, 陳珍誠, 施宣光, 王明蘅。《案例式設計與推理在建築應用之研究:總計畫》(國科會專題研究計畫 No. NSC86-2221-E006-053), 1997.
99. 陳珍誠。《以認知科學的觀點探討建築設計思考模型的譜系》(國科會專題研究計畫 No. NSC89-2211-E-032-028), 2001.
100. 魏洪泰。《全球資訊網建築案例資料庫系統之建構》。碩士論文, 國立成功大學, 臺南市, 1999.