簡易檢索 / 詳目顯示

研究生: 陳維廷
Chen, Wei-Ting
論文名稱: 封閉迴路多輸入多輸出-正交分頻多工調變系統之有效通道訊息回傳
Efficient Channel State Information (CSI) Feedback for Close-loop MIMO-OFDM Systems
指導教授: 張名先
Chang, Ming-Xian
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 47
中文關鍵詞: 通道資訊方向性最小方差貼合壓縮Karhunen–Loève Expansion高斯量化
外文關鍵詞: CSI, beamforming, least-square fitting, compression, Gaussian quantization, Karhunen-Loève Expansion
相關次數: 點閱:101下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於多天線-多載波系統擁有優異的通道容量及錯誤機率,並且可提昇傳輸效率,已受到矚目許久。藉由回傳的通道資訊,傳送端可使用預先編碼器改善系統的效能。方向性向量是重要的通道資訊,可以有效的應用在預先編碼-多輸出多輸入的系統上,而一些通道資訊簡化及有效率回傳通道資訊的演算法已經陸續被提出。然而,能量分配、選擇性天線及多型預先編碼也是可以增加通道容量及改善傳輸效能的重要議題。而一般回傳方法為接收端利用向量量化方相性向量後,回傳至傳送端,但如果是同時具有方向性和能量分配等多功能的系統,接收端除了回傳方相性向量之外還須回傳額外的通道資訊至傳送端,勢必大幅提高回傳量。
    為了更有效率的回傳通道資訊,我們基於Karhunen–Loève Expansion(KLE) ,提出回傳估測的通道響應至傳送端的方法。我們將KLE的係數當作通道響應重建的參數。而KLE係數的個數比起通道響應的數量少很多,這是很有效率的資料壓縮。這些係數為高斯分佈,在多輸入多輸出-正交分頻多工調變的系統下,為了有效率的回傳係數,我們使用高斯量化來減少量化誤差。模擬結果顯示了具有預先編碼的多輸入多輸出-正交頻多工調變系統及時變且頻率選擇性的通道環境下,我們所提出的演算法擁有很低的回傳負載,並且有很好的錯誤率效能。

    Multiple antennas -multiple carriers systems have been attracted many attention for a long time due to the outstanding capacity, error performance and throughput. The transmitter could apply the precoding based on the fed-back channel state information (CSI). The beam forming vectors, which are essential CSI, could be applied in precoded multiple-input multiple-output (MIMO) systems and some algorithms of CSI reduction and efficient feedback have been proposed. However, the power allocation, antenna selection and multi-mode precoding which can be applied in precoder are also important issues for increasing the channel capacity and improving the transmission performance. In general, we can use the vector quantization to feed back the beam-forming vectors to the transmitter. To implement a precoder which can be used not only the beam-forming but also the power allocation, we need to feed-back other channel information.
    In order to feed-back CSI more efficiently, we propose an efficient method that feed-back the estimated channel responses (CRs) to the transmitter based on the Karhunen-Loève Expansion (KLE). The coefficients of the KLE are used as the parameters for rebuilding CRs. The number of coefficients of the KLE is much fewer than the size of than the block of CRs, and this leads to efficient compression. These coefficients are of Gaussian distribution. To efficiently return the coefficients for the MIMO with orthogonal frequency-division multiplexing (OFDM) systems, we use the Gaussian quantization (GQ) to reduce quantization error. The simulated results show that the proposed algorithms could attain outstanding error performance for precoded MIMO-OFDM systems with low feedback load in the time-varying and frequency-selective channel.

    Chinese Abstract I English Abstract III Acknowledgement v Contents VI List of Tables VIII List of Figures IX Chapter 1 Introduction 1 Chapter 2 Close-loop MIMO-OFDM Systems........4 2.1 Channel Model....................4 2.2 Close-loop MIMO-OFDM System.......6 2.3 Close-loop MIMO-OFDM Systems with Finite-Rate Feedback............10 2.3.1 Vector/Matrix Quantization (VQ/MQ)......10 2.3.2 Selection of Finite-Rate Feedback.......12 2.4 Channel State Information Reduction.........13 2.4.1 Vector/Matrix Quantization (VQ/MQ)..................................................13 2.4.2 The Karhunen-Loève Expansion of a Random Vector.........................14 2.4.3 Karhunen-Loève Expansion of CRs in OFDM system.........................15 2.4.3.1 Across subcarriers ‒ Type A.........................................................16 2.4.3.2 Across time slots ‒ Type B............................................................18 2.4.4 Gaussian Quantization.............................................................................21 2.4.5 Normalize coefficient’s variance.............................................................24 2.5 Feedback load............26 2.6 Simulated results...........27 Chapter 3 Two Dimension block of CRs...........30 3.1 Introduction...........30 3.2 Derive two Dimension Karhunen-Loève Expansion.......31 3.3 Compare performance with Type A and Type B...........34 3.3.1 Feedback load...........34 3.3.2 Simulated results...........34 Chapter 4 Compare performance with literatures...........36 4.1 Discussion of Quantization..............................................................................36 4.2 Compare performance with our 1-D methods...............................................37 4.2.1 Feedback load.............................................................................................37 4.2.2 Simulated results........................................................................................38 4.3 Compare performance with our 2-D method..........41 4.3.1 Feedback load......................41 4.3.2 Simulated results..................42 Chapter 5 Conclusion 44 Bibliography 45

    [1] A. Kuhne, “throughput analysis of multi-user OFDMA-systems using imperfect CQI feedback and diversity techniques,” IEEE J. Select. Areas Commun., vol. 26, no. 8, pp. 1440 - 1450, October 2008.
    [2] S.Guharoy, N.B. Mehta, “Joint Evaluation of Channel Feedback Schemes, Rate Adaptation, and Scheduling in OFDMA Downlinks With Feedback Delays,” IEEE Trans. Veh. Technol., vol. 62, No. 4, pp. 1719-1731, May 2013.
    [3] Cho. Sungyoon, S. A. Jafar, N. Jindal, S. Vishwanath, “Feedback-Topology Designs for Interference Alignment in MIMO Interference Channels,” IEEE Trans. Signal Process, vol. 60, No. 12, pp. 6561 - 6575, December 2012.
    [4] A. Soysal, “Joint Channel Estimation and Resource Allocation for MIMO Systems–Part I: Single-User Analysis” IEEE Trans. Wireless Commun., vol.9, no.2, pp. 624- 631 February 2010.
    [5] H. Sampath, P. Stoica, and A. Paulraj, “Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion,” IEEE Trans. Commun., vol. 49, no. 12, pp. 2198-2206 Dec. 2001.
    [6] A. Scaglione, P. Stoica, S. Barbarossa, G. B. Giannakis, and H. Sampath, “Optimal designs for space-time linear precoders and decoders,” IEEE Trans. Signal Process, vol. 50, no. 5, pp. 1051-1064, May. 2002.
    [7] Sheng-Lun Chiou, Kuo-Wang Hsieh, and Ming-Xian Chang, “CSI Reduction of MIMO-OFDM Systems by Parameterization,” in Proc. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 15-18. Sept. 2008
    [8] Ren-Shian Chen and Ming-Xian Chang, “CSI Feedback for closed-loop MIMO-OFDM systems based on B-splines,” in Proc. IEEE Globe Com Workshop 2010.
    [9] J. C. Roh and B. D. Rao, “Transmit beamforming in multiple-antenna systems with finite rate feedback: a VQ-based approach,” IEEE Trans. Inform. Theory, vol. 52, no. 3, pp. 1101-1112, Mar. 2006.
    [10] J. C. Roh and B. D. Rao, “Design and analysis of MIMO spatial multiplexing systems with quantized feedback,” IEEE Trans. Signal Process, vol. 52, no. 8, pp. 2874-2886, Aug. 2006.
    [11] B. C. Banister, J. R. Zeidler, “Feedback assisted transmission subspace tracking for MIMO systems”, IEEE Trans. Select. Areas Commun, vol. 21, no. 3, pp. 452-463,
    46
    Apr. 2003.
    [12] J. Yang and D. B. Williams, “Transmission subspace tracking for MIMO Systems with low-rate feedback,” IEEE Trans. Commun., vol. 55, no. 8, pp.1629-1639, Aug. 2007.
    [13] Min Wu, “Feedback Reduction Based on Clustering in MIMO-OFDM Beamforming Systems,” WiCom '09. 5th International Conference on Wireless Communications, Networking and Mobile Computing, 2009., vol. 6, no. 1, pp. 1-4, Sept. 2009.
    [14] S. Zhou, B. Li, and P. Willett, “Recursive and trellis-based feedback reduction for MIMO-OFDM with rate-limited feedback,” IEEE Trans. Wireless Commun., vol. 5, no. 12, pp. 3400-3405, Dec. 2006.
    [15] J. Choi and R. W. Heath, Jr., “Interpolation based transmit beamforming for MIMO-OFDM with limited feedback,” IEEE Trans. Signal Process, vol. 53, no. 11, pp. 4125-4135, Nov. 2005.
    [16] J. Choi, B. Mondal, and R. W. Heath, Jr., “Interpolation based unitary precoding for spatial multiplexing MIMO-OFDM with limited feedback,” IEEE Trans. Signal Process, vol. 54, no. 12, pp. 4730-4740, Dec. 2006.
    [17] N. Khaled, B. Mondal, G. Leus, R. W. Heath Jr., F. Petr´e, “Interpolation-Based Multi-Mode Precoding for MIMO-OFDM Systems with Limited Feedback,” IEEE Trans. Wireless Commun., vol. 6, no. 3, pp. 1003-1013, Mar. 2007.
    [18] M. X. Chang and Y. T. Su, “Model-based channel estimation for OFDM signals in Rayleigh fading,” IEEE Trans. Commun., vol. 50, pp. 540-544, Apr. 2002.
    [19] D.J. Love, R.W. Heath. Jr., W. Santipach, M.L. Honig, “What is the value of limited feedback for MIMO channels” IEEE Commun. Mag vol. 42, No. 10, pp. 54-59, Oct. 2004.
    [20] Tao Cui, “Blind Receiver Design for OFDM Systems Over Doubly Selective Channels,” IEEE Trans. Commun., vol. 55, no.5, pp. 906 - 917, May 2007.
    [21] D.J. Love, “Grassmannian Beamforming for Multiple-Input Multiple-Output Wireless Systems,” IEEE ICC '03 International Conference on Communications, vol. 5, pp. 2618 - 2622, May 2003
    [22] D. J. Love, “Limited Feedback Precoding for Spatial Multiplexing Systems,” IEEE Trans. Inform. Theory, vol. 51, no.8, pp. 2967 - 2976 Aug. 2005
    [23] D. J. Love, “Limited feedback precoding for spatial multiplexing systems using linear receivers,”, IEEE MILCOM '03 Conference on Military Communications, Vol.1, pp. 627 – 632, Oct. 2003
    [24] H. Zhang, Y. Li, V. Stolpman, and N. V. Waes, “A reduced CSI feedback approach for precoded MIMO-OFDM systems,” IEEE Trans. Wireless Commun., vol. 6, no. 1, pp. 55-58, Jan. 2007
    47
    [25] LG Electronics: Codebook design and verification for 4x1 MIMO(2006)
    [26] Texas Instruments: Codebook Design for E-UTRA MIMO Pre-coding(2006)
    [27] ZTE: Code Book Design of Explicit Feedback(2010)
    [28] SVD-based vs. Release 8 codebooks for Single User MIMO LTE-A Uplink
    [29] Intel Corporation: Codebook Design for Precoded MIMO(2006)

    下載圖示 校內:2016-08-08公開
    校外:2016-08-08公開
    QR CODE