| 研究生: |
沈建賦 Shen, Chien-Fu |
|---|---|
| 論文名稱: |
氮化鎵系列發光二極體於效率與可靠度之效能提升 The Performance Enhancement of GaN-Based LEDs in Efficiency and Reliability |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 氮化鎵 、發光二極體 |
| 外文關鍵詞: | GaN, LED |
| 相關次數: | 點閱:49 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討研製氮化鎵系列高光取出效率與高可靠度之發光二極體。首先,利用鋁鏡於紫外光至綠光波長頻譜範圍內,仍可維持高達80%的反射率,我們研製出亮度提高35%且可靠度高於傳統的反射承載基板覆晶式近紫外光發光二極體。此外,具有雙面圖樣化藍寶石基板之氮系列覆晶式高功率發光二極體也於本論文中成功研製,利用此技術可大幅減少光子於藍寶石基板與空氣接觸界面之全反射造成的損失;因此,於發光強度上可提升53%,且不影響操作電壓。
為得到好的電流散佈效果,我們在P-型電極正下方嵌入一二氧化矽絕緣層介於P-型接觸層(即氧化銦錫)與磊晶層之間,此方法可有效提升亮度將近22%。我們也利用網狀氧化銦錫結構和以壓印方式改變氧化銦錫透明導電層的表面狀態,更進一步的減少氧化銦錫對光子的吸收,在此有高達30%的光強度提升。接著我們研製具有側壁粗化和柱狀波導的發光二極體,來調整側向光方向使其往上方發射,發現在垂直表面的方向上確實會有更強的光出現。另一方面,結合DBR和金屬反射鏡的優點,我們製作出一結合鋁與二氧化鈦/二氧化矽DBR的混合式高反射鏡面,此方法製得之反射鏡面可以得到與銀鏡面相當的高反射效果;同時亦可以減少DBR對數的製作而縮短時間。
此外,以薄化藍寶石基板方式研製的高功率、高可靠度發光二極體,在長時間燒測後,可因容易散走晶片本身產生的高溫而減少熱效應的影響,其發光效率仍可維持在90%以上(和初始值相比)。然而,輸出光功率卻會因藍寶石基板的薄化而些微降低。戶外的應用上,對靜電衝擊的穩定性是一項必須考慮的議題。利用P-N接面在順向靜電壓衝擊能耐可高達三仟五百伏的特性下,我們以製程方式建立一氮化鎵保護二極體與發光二極體反向並聯,當接受反向靜電壓衝擊時以提供另一電流路徑而不破壞主發光二極體。藉此,可大幅提高抗逆向靜電壓至兩仟伏人體放電模式,約是傳統的5~6倍高;且此方式之抗靜電壓能耐隨保護二極體尺寸大小而變。
Nitride based light emitting diodes with high extraction efficiency and reliability had been successfully fabricated in this dissertation. Firstly, it had been demonstrated that the Al metal reflector exhibited higher than 80% reflectivity from near-UV to green wavelength region. Therefore, nitride-based flip-chip near-UV LED with Al coated reflective sub-mount was fabricated. It was found that the output power was 35% higher and more reliable than that of conventional one. Then, nitride-based high power flip-chip (FC) LED with double-side patterned sapphire substrate was also fabricated. With this technique, the total reflection in the interface between sapphire and air could be greatly reduced and electroluminescence intensity was enhanced by 53% without increasing operation voltage for the fabricated LED.
To achieve a better current spreading, we inserted an insulating SiO2 layer between p-type GaN and ITO transparent contacts underneath p-pad electrode. There was about 22% increase in the light output intensity. We also used mesh ITO structure and imprint lithography for patterning the ITO transparent contacts to further reduce the absorption of photons from it. Then, to redirect the horizontally emitted photon upward, the LEDs with textured sidewall and pillar waveguides (STPW) was fabricated. It was found much stronger light output enhancement in the vertical directions. On the other hands, by combining the advantages of DBR with that of metallic mirror, the hybrid Al + TiO2/SiO2 DBR mirror was fabricated. With this hybrid mirror, we achieved as high reflectivity as silver and shortened the process time by reducing the number of DBR pairs at the same time.
By thinning out the sapphire substrate, nitride-based high power and high reliable LED was fabricated. The efficiency of this LED could also be remained (above 90% normalized to initial reading) due to the heat dissipated from chip to reduce thermal effect after long time continually operated. However, as the thickness of the sapphire substrate thinned out, the output power would also be dropped slightly. For the outdoor applications, ESD stability of LED is a challenge to take account. Due to the characteristics of p-n diode, the forward ESD stress voltage can reach up to 3.5 kV; we built an internal GaN p-n junction diode reversely parallel to the original LED so as to provide another current path when a negative ESD voltage was applied. The stability on electrostatic discharge of the LED with ESD protection could be greatly improved from several hundreds to 2kV in human body model (HBM), which were 5 ~ 6 times larger than the conventional one. Furthermore, the protection ability of electrostatic discharge would also be affected by the size of the shunt diode.
Chapter 1
[1]S. Nakamura et al., “InGaN/GaN/AlGaN-Based Laser Diodes with Modulation-Doped Strained-Layer Superlattices”, J. Appl. Phys. Vol.36, L1568-L1571, 1997.
[2]R. Juza and H. Hahn, Anorg. Allegem. Chem., Vol. 234, pp. 282, 1940.
[3]H. Amano, N. Sawaki, and I. Akasaki Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer”, Appl. Phys. Lett., Vol. 48, pp. 353-355, 1986.
[4]S. Nakamura, M. Senoh, S. Nagahama and Y. Sugimoto, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes”, Jpn. J. Appl. Phys. 35, L74-L76, 1996.
[5]S. Nakamura, “GaN Growth Using GaN Buffer Layer” Jpn. J. Appl. Phys. 30, L1705, 1991.
[6]S. Nakamura, T. Mukai, M. Senoh and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films”, Jpn. J. Appl. Phys. 31, L139-L142, 1992.
Chapter 2
[1]Shuji Nakamura, Masayuki Senoh, Shin-ichi Nagahama, Naruhito Iwasa, Takao Yamada, Toshio Matsushita, Hiroyuki Kiyoku and Yasunobu Sugimoto, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes”, Jpn. J. Appl. Phys., Vol. 35, pp. L74-L76, 1997.
[2]Hiroshi Amano, Masahiro Kito, Kazumasa Hiramatsu and Isamu Akasaki, “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI)”, Jpn. J. Appl. Phys., Vol. 28, pp. L2112-L2114, 1989.
[3]Shuji Nakamura, Takashi Mukai, Masayuki Senoh and Naruhito Iwasa, ”Thermal Annealing Effects on P-Type Mg-Doped GaN Films”, Jpn. J. Appl. Phys., Vol. 31, pp. L139-L141, 1992.
[4]Isamu Akasaki and Hiroshi, “Breakthroughs in Improving Crystal Quality of GaN and Invention of the p–n Junction Blue-Light-Emitting Diode”, Jpn. J. Appl. Phys.,Vol. 45, No. 12, 2006, pp. 9001-9010.
[5]Shuji Nakamura, Masayuki Senoh, Naruhito Iwasa and Shin-ichi Nagahama, “High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures”, Jpn. J. Appl. Phys., Vol.34, L797-L799, 1995.
[6]Chih-Hsin Ko, Yan-Kuin Su, Shoou-Jinn Chang, Ta-Ming Kuan, Chung-I Chiang, Wen-How Lan, Wen-Jen Lin and James Webb, “P-Down InGaN/GaN Multiple Quantum Wells Light-Emitting Diode Structure Grown by Metal-Organic Vapor-Phase Epitaxy”, Jpn. J. Appl. Phys., Vol. 41, 2489-2492, 2002.
[7]Tzu-Chi Wen and Wei-I Lee, “Influence of Barrier Growth Temperature on the Properties of InGaN/GaN Quantum Well”, Jpn. J. Appl. Phys., Vol. 40, 5302-5303, 2001.
[8] J.K Sheu, C.J Pan, G.C. Chi, C.H. Kuo, L.W Wu, C.H. Chen, S.J. Chang and Y.K. Su, “White-light emission from InGaN-GaN multi quantum-well light-emitting diodes with Si and Zn codoped active well layer”, IEEE Photon. Technol. Lett., Vol. 14, No. 4, pp. 450-452, 2002.
[9]H. P. Maruska and J. J. Tietjen, “The preparation and properties of vapor-deposited single-crystal-line GaN”, Appl. Phys. Lett., Vol. 15, pp. 327-329, 1969.
[10]I. Adessida, A. Mahajan, E. Andideh, M.A. Kahn, D.T. Olson, and J.N. Kuznia, “Reactive ion etching of gallium nitride in silicon tetrachloride plasmas”, Appl. Phys. Lett., 63, 2777, 1993.
[11]S.J. Pearton, C.R. Abernathy, F. Ren and J.R. Lothian, “Dry and wet etching characteristics of InN, AlN, and GaN deposited by electron cyclotron resonance metalorganic molecular beam epitaxy”, J. Vac. Sci. Technol., Vol. 11, 1772, 1993.
[12]R.J. Shul, G.B. McClellan, S.A. Casalnuovo, D.J. Rieger, ”Inductively coupled plasma etching of GaN”, Appl. Phys. Lett., 69, 1119, 1996.
[13]ESD Association Standard Test Method for electrostatic discharge sensitivity testing-Human Body Model (HBM) Component Level (ANSI/ESD5.1-2001)
[14]Billeb A., Grieshaber W., Stocker D., Schubert E. F. and Karlicek R. F. Jr. “Microcavity effects in GaN epitaxial films and in Ag/GaN/sapphire structures”, Appl. Phys. Lett., 70, 2790(1997).
[15]A. A. Bergh, M. Hill, R. H. Saul, and S. Plains, U.S. Patent No. 3,739,217 (1973).
[16]T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening”, Appl. Phys. Lett., Vol. 84, pp. 855-857, 2004.
[17]C.S. Chang, S.J Chang, Y.K Su, W. S. Chen, C. F. Shen, S. C. Shei and H. M. Lo ” Nitride based Power Chip with Indium-Tin-Oxide p-Contact and Al Back-Side Reflector” Jpn.J. Appl. Phys., Vol. 44, No. 4B, 2005.
[18]Y. S. Zhao, D. L. Hibbard, H. P. Lee, K. Ma, W. So and H. Liu, “Efficiency enhancement of InGaN/GaN light-emitting diodes with a back-surface distributed Bragg reflector”, J. Electron. Mater., vol. 32, p. 1523, 2003.
[19]C. H. Lin, J. Y. Tsai, C. C. Kao, H. C. Kuo, C. C. Yu, J. R. Lo, and K. M. Leung, “Enhanced light output in InGaN-based light-emitting diodes with omni-directional one-dimensional photonic crystals,” Jpn. J. Appl. Phys., vol. 45, p. 1591, 2006.
[20]S. P. Sim, M. J. Robertson, and R. G. Plumb, “Catastrophic and latent damage in GaAlAs laser caused by electrical transient”, J. Appl. Phys., vol. 55, pp. 3960–3955, 1984.
[21]T. Inoue, “Light-Emitting Devices,” Japanese Patent H11-040 848, 1999.
[22]S. J. Chang, C. H. Chen, Y. K. Su, J. K. Sheu, W. C. Lai, J. M. Tsai, C. H. Liu, and S. C. Chen, “Improved ESD protection by combining InGaN-GaN MQW LEDs with GaN Schottky diodes”, IEEE Electron Device Lett., vol. 24, pp. 129–131, Mar. 2003.
[23]E. Fred Schubert, “Light-Emitting Diodes”.
Chapter 3
[1]T. Nishida, H. Saito, and K. Kobayashi, “Efficient and high power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN”, Appl. Phys. Lett., vol. 79, no. 6, pp. 711–712, Aug. 2001.
[2] Toshio Nishida, Hisao Saito, and Naoki Kobayashi , “Millwatt operation of AlGaN-based single quantum well light emitting diode in the ultraviolet region”, Appl. Phys. Lett., vol. 78, no. 25, pp. 3927–3928, June 2001.
[3] T. Mukai and S. Nakamura, “Ultraviolet InGaN and GaN single quantum well structure light-emitting diodes grown on epitaxially laterally overgrown GaN substrates”, Jpn. J. Appl. Phys., vol. 38, no. 10, pp. 5735–5739, Oct. 1999.
[4] J. Han, M. H. Crawford, R. J. Shul, J. J. Figiel, L. Zhang, Y. K. Song, H. Zhou, and A. V. Nurmikko, “AlGaN/GaN quantum well ultraviolet light-emitting diodes”, Appl. Phys. Lett., vol. 73, no. 12, pp. 1688–1690, Sept. 1998.
[5] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High output power InGaN ultraviolet light emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy”, Jpn. J. Appl. Phys. Lett., vol. 40, no. 6B, pp. L583–L585, June 2001.
[6] C. S. Chang, S. J. Chang , Y. K. Su, W. S. Chen, C. F. Shen, S. C. Shei and H. M. Lo, “Nitride based Power Chip with Indium-Tin-Oxide p-Contact and Al Back-Side Reflector”, Jpn. J. Appl. Phys. Lett., vol. 44, no. 4B, pp. 2462-2464, Mar. 2005.
[7] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise, G. Christenson, Y.-C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Gotz, N. F. Gardner, R. S. Kern, and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes”, Appl. Phys. Lett., vol. 78, No. 22, pp. 3379-3381, 2001.
[8] S. J. Chang, C. S. Chang, Y. K. Su, C. T. Lee, W. S. Chen, C. F. Shen, Y. P. Hsu, S. C. Shei and H. M. Lo, “Nitride-Based Flip-Chip ITO LEDs”, IEEE Tran. Adv. Pack., vol. 28, no. 2, pp. 273-277, May 2005.
[9] A. Chitnis, J. Sun, V. Mandavilli, R. Pachipulusu, S. Wu, M. Gaevski, V. Adivarahan, J. P. Zhang, and M. Asif Khan, A. Sarua and M. Kuball, “Self-heating effects at high pump currents in deep ultraviolet light-emitting diodes at 324 nm”, Appl. Phys. Lett., vol. 81, No. 18, pp. 3491-3493, 2002.
[10] C. H. Kuo, S. J. Chang, Y. K. Su, R. W. Chuang, C. S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo and J. M. Tsai, “Nitride-based near-ultraviolet LEDs with an ITO transparent contact”, Mater. Sci. Eng. B, vol. 106, pp. 69-72, 2004.
[11] Y. P. Hsu, S. J. Chang, Y. K. Su, J. K. Sheu, C. H. Kuo, C. S. Chang and S. C. Shei, “ICP etching of sapphire substrates”, Optical Mater., Vol. 27, pp. 1171-1174, 2005.
[12] S. J. Chang, W. S. Chen, Y. C. Lin, C. S. Chang, T. K. Ko, Y. P. Hsu, C. F. Shen, J. M. Tsai and S. C. Shei, “Nitride-based flip-chip LEDs with transparent ohmic contacts and reflective mirrors”, IEEE Tran. Adv. Packaging, Vol. 29, pp. 403-408, 2006.
[13] S. J. Chang, C. S. Chang, Y. K. Su, C. T. Lee, W. S. Chen, C. F. Shen, Y. P. Hsu, S. C. Shei and H. M. Lo, “Nitride-based flip-chip ITO LEDs”, IEEE Tran. Adv. Packaging, Vol. 28, pp. 273-277, 2005.
[14] K. Tadatomo, H. Okagawa, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo and T. Taguchi, “High output power InGaN ultraviolet light emitting diodes fabricated on patterned sapphire substrates using metalorganic vapor phase epitaxy”, Phys. Stat. Sol. (a), Vol. 188, pp. 121-125, 2001.
[15] W. K. Wang, D. S. Wuu, S. H. Lin, P. Han, R. H. Horng, T. C. Hsu, D. T-C. Huo, M. J. Jou, Y. H. Yu and A. K. Lin, “Efficiency improvement of near-ultraviolet InGaN LEDs using patterned sapphire substrates”, IEEE J. Quan. Electron., Vol. 41, pp. 1403-1409, 2005.
[16] Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates”, IEEE Photon. Technol. Lett., Vol. 18, pp. 1152-1154, 2006.
[17] S. J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, T. C. Wen, S. C. Shei, J. C. Ke, C. W. Kuo, S. C. Chen and C. H. Liu, “Nitride-based LEDs fabricated on patterned sapphire substrates”, Solid State Electron., Vol. 47, pp. 1539-1542, 2003.
Chapter 4
[1]S. J. Chang, M. L. Lee, J. K. Sheu,W. C. Lai, Y. K. Su, C. S. Chang, C. J. Kao, G. C. Chi, and J. M. Tsai, “GaN metal-semiconductor-metal photodetectors with low-temperature GaN cap layers and ITO metal contacts”, IEEE Electron Device Lett., vol. 24, pp. 212–214, Apr. 2003.
[2]S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin and J. C. Ke, “Highly reliable nitride based LEDs with SPS+ITO upper contacts”, IEEE J. Quan. Electron., vol. 39, pp. 1439-1443, 2003.
[3]H. Kim, J. M. Lee, C. Huh, S. W. Kim, D. J. Kim, S. J. Park and H. Hwang, “Modeling of a GaN-based light-emitting diode for uniform current spreading”, Appl. Phys. Lett., Vol. 77, 1903-1904, 2000.
[4]X. Guo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates”, J. Appl. Phys., Vol. 90, 4191-4195, 2001.
[5]C. C. Liu, Y. H. Chen, M. P. Houng, Y. H. Wang, Y. K. Su, W. B. Chen and S. M. Chen, “Improved light output power of GaN LEDs by selective region activation”, IEEE Photon. Technol. Lett., Vol. 16, pp. 1444-1446, 2004.
[6]C. Huh, J. M. Lee, D. J. Kim and S. J. Park, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer”, J. Appl. Phys., Vol. 92, pp. 2248- 2250, 2002.
[7]I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film lightemitting diodes”, Appl. Phys. Lett., vol. 63, pp. 2174–2176, 1993.
[8]R. Windisch, P. Heremans, A. Knobloch, P. Kiesel, G. H. Dohler, B. Dutta, and G. Borghs, “Light-emitting diodes with 31% external quantum efficiency by outcoupling of lateral waveguide modes”, Appl. Phys. Lett., vol. 74, pp. 2256–2258, 1999.
[9]R. Windisch, B. Dutta, M. Kuijk, A. Knobloch, S. Meinlschmidt, S. Schoberth, P.Kiesel, G. Borghs, G. H. Dohler and P. Heremans, “40% efficient thin-film surface-textured light-emitting diodes by optimization of natural lithography”, IEEE Trans. Electron Devices, vol. 47, pp. 1492–1498, July 2000.
[10]J. K. Sheu, Y. S. Lu, M. L. Lee, W. C. Lai, C. H. Kuo, C. J. Tun, et al. “Enhanced efficiency of GaN-based light-emitting diodes with periodic textured Ga-doped ZnO transparent contact layer”, Appl. Phys. Lett., Vol. 90, 263511-263513, 2007.
[11]D.S. Leem, J. Cho, C. Sone, Y. Park, T.Y. Seong, “Light-output enhancement of GaN-based light-emitting diodes by using hole-patterned transparent indium tin oxide electrodes”, J. Appl. Phys., Vol. 98, pp. 076170-1~076170-3, 2005.
[12]Mukai, T., “Recent progress in group-III nitride light-emitting diodes” IEEE J. Sel. Top. Quantum Electron. 8, 264 2002.
[13] R. Windisch, P. Heremans, A. Knobloch, P. Kiesel, G. H. Dohler, B. Dutta and G. Borghs, “Light-emitting diodes with 31% external quantum efficiency by out-coupling of lateral waveguide modes”, Appl. Phys. Lett., vol. 74, pp. 2256-2258, 1999.
[14] C. S. Chang, S. J. Chang , Y. K. Su, W. S. Chen, C. F. Shen, S. C. Shei and H. M. Lo, “Nitride based Power Chip with Indium-Tin-Oxide p-Contact and Al Back-Side Reflector”, Jpn. J. Appl. Phys. Lett., vol. 44, no. 4B, pp. 2462-2464, Mar. 2005.
[15]Y. S. Zhao, D. L. Hibbard, H. P. Lee, K. Ma, W. So, and H. Liu, “Efficiency enhancement of InGaN/GaN light-emitting diodes with a back-surface distributed Bragg reflector”, J. Electron. Mater., vol. 32, p. 1523, 2003.
[16]C. H. Lin, J. Y. Tsai, C. C. Kao, H. C. Kuo, C. C. Yu, J. R. Lo, and K. M. Leung, “Enhanced light output in InGaN-based light-emitting diodes with omnidirectional one-dimensional photonic crystals,” Jpn. J. Appl. Phys., vol. 45, p. 1591, 2006.
[17]J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, et al. “High-transparency Ni/Au ohmic contact to p-type GaN”, Appl. Phys. Lett., Vol. 74, 2340-2432, 1999.
[18]T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, and S. P. DenBaars, “Indium tin oxide contacts to gallium nitride optoelectronic devices,” Appl. Phys. Lett., vol. 74, pp. 3930–3932, 1999.
[19]S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, “Improvement of InGaN-GaN Light Emitting Diodes With Surface-Textured Indium-Tin-Oxide Transparent Ohmic Contacts” IEEE Photonics Technol. Lett. 15, 649 2003.
[20]D.S. Leem, J. Cho, C. Sone, Y. Park, T.Y. Seong, “Light-output enhancement of GaN-based light-emitting diodes by using hole-patterned transparent indium tin oxide electrodes”, J. Appl. Phys., Vol. 98, pp. 076170-1~076170-3, 2005.
[21]Mukai, T. “Recent progress in group-III nitride light-emitting diodes”, IEEE J. Sel. Top. Quantum Electron. 8, 264 2002.
[22]R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee and D. S. Wuu, “GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography”, Appl. Phys. Lett., vol. 86, pp. 221101, 2005.
[23] R. Windisch, P. Heremans, A. Knobloch, P. Kiesel, G. H. Dohler, B. Dutta and G. Borghs, “Light-emitting diodes with 31% external quantum efficiency by out-coupling of lateral waveguide modes”, Appl. Phys. Lett., vol. 74, pp. 2256-2258, 1999.
Chapter 5
[1] C. F. Chu, C. C. Yu, H. C. Cheng, C. F. Lin and S. C. Wang, “Comparison of p-Side Down and p-Side Up GaN Light-Emitting Diodes Fabricated by Laser Lift-Off”, Jpn. J. Appl. Phys., Vol. 42, L147-150, 2003.
[2] B. Zhang, T. Egawa, H. Ishikawa, Y. Liu, and T. Jimbo, “ Thin-film InGaN multiple-quantum-well light-emitting diodes transferred from Si (111) substrate onto copper carrier by selective lift-off”, Appl. Phys. Lett., Vol. 86, 071113, 2005.
[3] R. H. Horng, W. K. Wang, S. Y. Huang, and D. S. Wuu, “Effect of Resonant Cavity in Wafer-Bonded Green InGaN LED With Dielectric and Silver Mirrors”, IEEE Photon. Technol. Lett., Vol. 18, No. 3, pp. 457-459, 2006.
[4] T. Inoue, “Light-Emitting Devices (in Japanese)”, Japanese Patent H11-040 848, 1999.
[5] S. J. Chang, C. H. Chen, Y. K. Su, J. K. Sheu, W. C. Lai, J. M. Tsai, C. H. Liu, and S. C. Chen, “Improved ESD protection by combining InGaN-GaN MQW LEDs with GaN Schottky diodes”, IEEE Electron Dev. Lett., Vol. 24, pp. 129-131, 2003.
[6] T. C. Wen, S. J. Chang, C. T. Lee, W. C. Lai and J. K. Sheu, “Nitride-based LEDs with modulation doped Al0.12Ga0.88N/GaN superlattice structures”, IEEE Tran. Electron. Dev., Vol. 51, pp. 1743-1746, 2004.
[7] J. J. Horng, Y. K. Su, S. J. Chang, W. S. Chen, and S. C. Shei, “GaN-Based Power LEDs With CMOS ESD Protection Circuits”, IEEE Transactions on Device and Materials Reliability, Vol. 7, NO. 2, 2007.
[8] S. J. Chang, S. C. Wei, Y. K. Su, and W. C. Lai, “Nitride-Based Dual-Stage MQW LEDs”, Journal of The Electrochemical Society, 154 (10) H871-H874, 2007.
[9] P. C. Tsai, Ricky W. Chuang, and Y. K. Su, “Lifetime Tests and Junction-Temperature Measurement of InGaN Light-Emitting Diodes Using Patterned Sapphire Substrates”, IEEE Juneral of Lighwave Technology, Vol. 25, pp. 591-596, 2007.
[10] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin and J. C. Ke, "Highly reliable nitride based LEDs with SPS+ITO upper contacts", IEEE J. Quan. Electron., Vol. 39, pp. 1439-1443, 2003.
[11] A. Ebong, S. Arthur, E. Downey, X. A. Cao, S. LeBoeuf and D. W. Merfeld, “Device and circuit modeling of GaN/InGaN light emitting diodes (LEDs) for optimum current spreading”, Solid State Electron., Vol. 47, pp. 1817-1823, 2003.