| 研究生: |
歐茹琪 Ou, Ju-Chi |
|---|---|
| 論文名稱: |
多變量ROC曲線下面積估計量之研究 The estimation of the area under multivariate ROC curve |
| 指導教授: |
馬瀰嘉
Ma, Mi-Chia |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 162 |
| 中文關鍵詞: | 無母數估計量 、模型導向估計量 、多變量ROC曲線 |
| 外文關鍵詞: | nonparametric estimation, multivariate ROC curve, model-based esitmation |
| 相關次數: | 點閱:187 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
關於兩種或多種診斷方法,在診斷的預測上是否有顯著差異的檢定,在過去的文獻中已有一些研究,且對於一種診斷的正確性,通常利用ROC曲線下面積來評估。但在目前的診斷方法中,利用多個診斷方法同時評估某種疾病是常見的,例如糖尿病,但尚未有一個適當測度量可以評斷這些診斷方法的準確性。本論文主要提出一個整合的測度量來評估多種診斷方法同時使用下的準確性,在同時考慮多個診斷方法下,利用隨機效果模式架構了多變量ROC曲線下面積求法,及探討其性質。最後,將所導出的方法應用在一組糖尿病的資料上。
A statistical tool which is popular for describing the accuracy of diagnostic is the receive operating characteristic (ROC) curve. There has been an increased use of ROC curve for assessing the effectiveness of continuous diagnostic markers in distinguishing between diseased and healthy individuals. McClish (1989) recognized that the area under the ROC curve(AUROC) is a global measure of a test's accuracy because it includes the entire range of false-positive rates from 0.0 to 1.0.
In fact, it is possible that several diagnostic markers are used to detect a disease , e.g. diabetes, and how one can measure their simultaneous diagnostic accuracy. Based on the random effect model, we derive an estimate of the area under multivariate ROC curve. A model-based estimation and an approximated confidence interval are derived by combining the confidence intervals of two parameters using Bonferroni method. A nonparametric estimation will also be proposed and compared to the model-based estimate by a simulation study. Finally, this method is applied to a real data for example.
1.Cochran, W.G., Testing a linear relation among variances, Biometrics, 7, 17-32, 1951.
2.Dawson-Saunders, B., & Trapp, R. G., Basic and clinical
biostatistics., Norwalk, CT : Appleton & Lange, 1990.
3. Efron, B. and Tibshirani, R. J., it An Introduction to the Bootstrap,Chapman and Hall, United States of America, 1993.
4.Emir, B. Wieand, S. Jung, S. H. and Ying, A.,Comparison of diagnostic markers with reported measurements : a non-parametric ROC curve approach, Statistics in Medicine, Vol.19, 511-523, 2000.
5. Faraggi, D. and Reiser, B., Estimate of the area under the ROC curve, it Statistics in Medicine, Vol.21, 3093-3106, 2002.
6.Gibbons, J. D., Nonparametric Statistical Inference, McGraw-Hill, New York, 1971.
7.Green, D. M. and Swets, J. A., Signal detection theory and psychophysics, John Wiley and Sons, New York, 1996.
8.Hanley, J. A. and McNeil, B. J., The meaning and use of the area under a receiver operating characteristic(ROC), Radiology, Vol.143:29-36, 1982.
9.Harber, J. R., Evaluating utility in diagnostic decision making, The journal of Special Education}, Vol.15, 413-428, 1981.
10.Hollander, M., & Wolfe, D. A., Nonparametric statistical methods, Wiley, New York, 1973.
11.Hsiao, J. K., Bartko,J. J., &, Potter, W. Z., Diagnosing diagnoses, Archives of General Psychiatry, Vol.46, 664-667, 1989.
12.McFall, R. M., &, Treat, T. A., Quantifying the information value of clinical assessments with signal detection theory, Annual Review of Rsychology, Vol.50, 214-241, 1999.
13.McClish, D. K., Analyzing a portion of the ROC curve, Medical Decision Making, Vol.9, 190-195, 1989.
14.Metz, C. E., Basic principles of ROC analysis, Seminars in Nuclear Medicine, Vol.8,283-298, 1978.
15.Pepe, M. S. Receiver operating characteristic methodology, Journal of the American Statistical Association, Vol.95, No.449, 308-311, March 2000.
16.Qiu, P. and Le, C., ROC curve estimation based on local smothing, Journal of the Statistical Computation & Simulation, Vol.70, 55-69, 2001.
17.Satterthwaite, F. E., Synthesis of variance, Psychometrika, Vol.6, 309-316, 1941.
18.Satterthwaite, F. E., An approximate distribution of estimates of variance
components, Annals Mathematical Statistics, Vol.27, 251-271, 1946.
19.Swets, J. A., Signal detection theory and RIC analysis in psychology and diagnosis : Collected papers. Mahwah, NJ : Erlbaum, 1996.
20.Swets, J. A., Dawes, R. M., &, Monahan, J., Psychological Science can improve diagnostic decisions, Psychological Science in the Public Interest, Vol.1, 1-26, 2000.
21.Swets, J. A., Measuring the accuracy of diagnostic systems, Science, 240, 1285-1293, 1988.
22.Swets, J. A, and Pickett, R. M., Evaluation of diagnostic systems: Methods from signal detection theory, Academic Press, New York, 1982.