| 研究生: |
多翰嘉 DORN, Killian |
|---|---|
| 論文名稱: |
電極板夾角對脈衝電漿推進器性能之影響與優化 Optimizing the effect of electrode angle on the performance of pulsed plasma thruster |
| 指導教授: |
李約亨
Li, Yueh-Heng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 電力推進 、脈衝式電漿推進器 、電極夾角 、非對稱配置 、可靠性 、立方衛星 、田口方法 |
| 外文關鍵詞: | Electric Propulsion, Pulsed Plasma Thruster, Electrode angle, Asymmetric configurations, Reliability, Cube satellite |
| 相關次數: | 點閱:106 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文致力於發展具有不同的電極擴張角度,以及非對稱角度之微型脈衝式電漿推進器(簡稱PPT),選擇四個不同的電極夾角和非對稱配置設置,以檢測其電極結構參數對於推進器性能和可靠性之影響。
與傳統化學推進系統相比,電力推進系統使用高速排出的電漿。首先,電力推進系統的推力是由電漿流中,離子的高排氣速度所產生。微型脈衝式電漿推進器是太空工程中仍在使用的最古老之推進技術之一,及具有簡單性和低成本的特徵,使其對於微型衛星的電力推進系統發展具有吸引力。此外,PPT也吸引青年創業的太空公司和高等教育機構參與,促進到當前太空產業發展。
近年來,PPT在設計、製造和示範方面,已完成在電力推進系統應用於立方衛星方面進行相關研究與技術發展。 PPT的原型機設計先前已經完成,本研究主要通過可拆卸和可更換的部件對推進器的推力性能進行改進。通過高速相機的使用已經觀察到並解釋未解決的電漿放電現象,並且提出假設模型。此外,採用田口方法來檢查設計參數對推進器性能和可靠性的影響。
This master thesis focuses on the development of a pulsed plasma thruster (PPT in short) using an electrode with the variation of electrode angles and asymmetric angles. Four different electrode angles and asymmetric configurations set-ups were selected and examined, and it concludes the influence on the performance and reliability of the thruster.
Compared to the conventional chemical propulsion systems, electric propulsion uses expelling plasma with high speed. Primarily, the electric thrust is generated by high exhaust velocities of ions in the plasma flow. Pulsed Plasma Thruster is one of the oldest propulsion technologies still used in the space industries. Their features relevant to the simplicity and low cost make them very attractive for the electric propulsion development of miniature satellites. In addition, PPTs have drawn increasing attention for young start-up space companies and universities to get involved in the prevailing space industries.
The PPT-relevant researches had been undertaken in the facets of the design, manufacturing, and demonstration of the PPT for Cube satellites in years. The original design of the PPT had been made previously, and then the future improvement can be implemented to the thruster, with detachable and replaceable parts. An unresolved phenomenon has been observed and elucidated by employing the high-speed camera, and hypothetical solutions have been addressed. In addition, the Taguchi method was employed to scrutinize the effect of the design parameter on the performance and reliability of the thruster.
[1]
« Nanosats.eu » [Online]. Available: https://www.nanosats.eu
[2]
« Unoosa » [Online]. Available: https://www.unoosa.org
[3]
« ISISpace » [Online]. Available: https:// ISISpace.nl
[4]
« Wikipedia » [Online]. Available: https://en.wikipedia.org/wiki/CubeSat
[5]
« Nasa.gov » [Online]. Available: https://www.nasa.gov/feature/next-space-technologies-for-exploration-partnerships-nextstep-projects
[6]
« Nasa.gov » [Online]. Available: https://www.nasa.gov/exploration/systems/sls/international-partners-provide-cubesats-for-sls-maiden-flight
[7]
« Equuleus » [Online]. Available: https://en.wikipedia.org/wiki/EQUULEUS
[8]
« Qb50 » [Online]. Available: https://www.qb50.eu/
[9]
« JPL » [Online]. Available: https://www.jpl.nasa.gov/cubesat/earth-science. php
[10]
« Space.Skyrocket » [Online]. Available: https://space.skyrocket.de/doc_sdat/sporesat.htm
Page | 103
[11]
« Wikipedia - Specific Impulse » [Online]. Available: https://en.wikipedia.org/wiki/Specific_impulse
[12]
J.-Y. Pan, Y.-H. Li, (2019). Development, Desing, and Demonstration of Vaccum Cathode Arc Thruster (VCAT).Master thesis, National Cheng Kung University.
[13]
F. F. Chen, (2006). Introduction to Plasma Physics and Controlled Fusion, 3rd edition. New York: Springer, ISBN 978-3-319-22308-7.
[14]
R. O. Dendy, (1993). Plasma Physics: An Introductory Course. Cambridge: Cambridge University Press, ISBN 978-0521484527.
[15]
D. Bock, G. Herdrich, M. Lau, M. Lengowski, T. Schonherr, F. Steinmetz, B. Wollenhaupt, O. Zeile, H.-P. Roser, (2011). Electric propulsion Systems for small Satellites: The low Earth Orbit Mission Perseus. Progress in Propulsion Physics, vol. 2, pp. 629-638.
[16]
R. R. John, S. Bennett, J. F. Connor, (November 1963). Arcjet Engine Performance: Experiment and Theory. AIAA Journal, vol. 4, pp.43-68.
[17]
W. A. Hoskins, R. J. Cassady, O. Morgan, R. M. Myers, F. Wilson, D. Q. King and K. deGrys, (2013). 30 Years of Electric Propulsion Flight Experience at Aerojet Rocketdyne. 33rd International Electric Propulsion Conference The George Washington University, USA, pp. 2-3
[18]
P. Raina, S. Sharma, S. Khajuria, (2018). Electric Propulsion of Spacecraft and Rockets. International Journal of Scientific and Technical Advancements.
[19]
M. Pietzka, (2016). Development and Characterization of a Propulsion Systemfor CubeSats based on Vacuum Arc Thrusters. Master thesis, Universität Der Bundeswehr München Fakultät für Elektrotechnik und Informationstechnik.
[20]
J. E. Polk, R.Y. Kakuda, J.R. Anderson, J. R. Brophy V.K. Rawlin, J. Sovey, J. Hamley, (2000). In Flight Performance of the NSTAR Ion Porpulsion System on the Deep Space One Mission. IEEE Aerospace Conference. Proceedings, Big Sky, MT, USA, vol.4, pp. 123-148.
Page | 104
[21]
E.Y. Choueiri, (2004). A critical history of electric propulsion: The first 50 years (1906-1956). Journal of Propulion and Power.
[22]
M-H Shen, H-K Fang, Y-C Chao, S. W. Tam, Y-H Li, (2017). Developement of a micro ECR Ion Thruster for Space Propulsion. 35th International Electric Porpulsion Conference. Georgia Institute of Technology. USA.
[23]
T. Edamitsu, H. Asakura, A. Matsumoto, H. Tahara, (2005). Research and Development of a Pulsed Plasma Thruster in Osaka University. 29th International Electric Propulsion Conference, Princeton University, USA, November
[24]
T. Huang, Z. Wu, X. Liu, K. Xie, N. Wang, and Y. Cheng, (2015). Study of Breackdow in a ablative Pulsed Plasma Thruster. Physics of Plasma.
[25]
« Press Realease August 2019 Aethera Thechnologies » [Online]. Available: http://www.adastrarocket.com/aarc/
[26]
Jared P. Jared P. Squire, M. D, (2014). Development toward a spaceflight capable VASIMR® engine and SEP applications. AIAA Space and Astronautics Forum and Exposition (space 2014).
[27]
I. J. E. Jordan, (2000). Electric propulsion: which one for my spacecraft. Whiting School of Engineering.
[28]
M. Lenormand, (2019). The effect of diverging nozzle addition on the operational reliability of solid propellant micro pulsed plasma thruster. Master thesis, National Cheng Kung University.
[29]
C. Royer, (2019). Effect of voltage on second-stage electrodes of dual-stage solid propellant pulsed plasma thruster . Master thesis, National Cheng Kung University.
[30]
J. K Ziemer, (2001). Performance Scaling of Gas-Fed Pulsed Plasma Thrusters . PHD thesis, Falculty Of Princeton.
Page | 105
[31]
T. Schonherr, A. Nawaz, M. Lau, D. Petkow, G. Herdrich, (2011). Review of Pulsed Plasma Thruster Development at IRS. Aerospace Technology Japan, pp.11-16.
[32]
« Komurasaki-Koizumi Laboratory » [Online]. Available: http://www.al.t.u-tokyo.ac.jp/index_e.html
[33]
D. Palumbo, (1979). Solid propellant pulsed plasma propulsion system development for N-S stationkeeping. 14th International Electric Propulsion Conference. Princeton. USA
[34]
P. V. Shaw, (2011). Pulsed Plasma Thrusters for Small Satellites. PHD thesis Faculty of Engineering and Physical Sciences University of Surrey Space.
[35]
A. Rezaeiha, T. Schônherr, (2014). Review of Worldwide Activities in Liquid-Fed Pulsed Plasma Thruster. Journal of Propulsion and Power, vol. 30, pp 253-264.
[36]
D. Hou; W. Zhao; X. Kang, (2008). Operation Analysis of Pulsed Plasma Thruster. Acta Astronautica, vol. 62, pp. 404-409.
[37]
« Hyperphysic » [Online]. Available: http://hyperphysics.phy-astr.gsu.edu/hbase/index.html
[38]
W. Y. L. Ling, T. Schönherr, H. Koizumi, (2017). Discharge Characteristics of an Ablative Pulsed Plasma Thruster with non-volatile Liquid Propellant. Applied Physics Letters.
[39]
Z. Zhang, W. Y. L. Ling, J. Ren, H. Tang, J. Cao, X. Lin and T. M. York, (2019). The Plasma morphology of an asymmetric electrode ablative pulsed plasma thruster. Plasma sources Science and Technology, vol. 28.
[40]
Z. Zhang, J. Ren, H-B Tang, S. Xu, W. Y. L. Ling, J. Cao, (2018). Inter-electrode discharge of an ablative pulsed plasma thruster with asymmetric electrodes. Plasma Sources Sciences and Technology, vol. 28.
Page | 106
[41]
H. Koizumi, R. Noji, K. Kimiya, A. Yoshihiro, (2007). Plasma acceleration process in an ablative pulsed plasma thruster. Physics of Plasma, vol. 14.