簡易檢索 / 詳目顯示

研究生: 張惟昭
Chang, Wei-Chao
論文名稱: 玻璃基板上成長高性能雙層通道銦鎵鋅氧化物透明薄膜電晶體特性之研究
The Study of High Performance Dual Channel a-IGZO Full Transparent Thin Film Transistor on Glass Substrate
指導教授: 方炎坤
Fang, Yean-Kuen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 115
中文關鍵詞: 雙層通道銦鎵鋅氧化物透明薄膜電晶體
外文關鍵詞: Dual Channel, a-IGZO, Full Transparent, TFT
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究在一般玻璃基板上成長大面積平面顯示器用高性能銦鎵鋅氧化物雙通道透明薄膜電晶體。本元件使用射頻磁控濺鍍氧化鉿/氧化鋁(HfO2/Al2O3)作為堆疊絕緣層閘極。並濺鍍高載子濃度的氧化鋅鎵(GZO)作為元件的下閘極、源極與汲極。實驗顯示以氧化鉿/氧化鋁組成的雙層閘極絕緣能有效降低閘極漏電流。
    利用具有低載子濃度以及比非晶矽高的載子移動率的非晶銦鎵鋅氧化物作為雙層通道中的上主動層可以讓電晶體有低的臨界電壓。下主動層則利用具有高載子移動率、較佳導電度的純氧化鋅來增加開電流(on-current)以提昇開關電流比(On/Off current ratio)。但傳統的ITO/a-IGZO雙通道薄膜電晶體,在退火後會因ITO再結晶,導致關電流提高使開關電流比下降。故本研究改用ZnO/a-IGZO做為雙通道主動層。實驗證實其電流開關比,臨界電壓及次臨界擺幅可分別達到1.37×107, 1.72Volt,及SS=0.37V/dec。這些特性不但較單主動層為佳,且優於已報導的銦鎵鋅氧化物雙通道薄膜電晶體1×107的電流開關比,臨界電壓2.75Volt,SS=1.22V/dec。
    此外,又藉由退火可修復電晶體元件介面間的缺陷以降低臨界電壓。在250℃的溫度下退火10分鐘, ZnO/a-IGZO雙通道電晶體的臨界電壓可由1.72Volt下降至1.2Volt,電流開關比微幅增加至1.42×107,場效載子遷移率5.5 cm2/Vs,次臨界擺幅降至0.33 V/dec且透明度可保持>85%以上。

    In this thesis, the high performance amorphous InGaZnO double channel full transparent thin film transistors (FTTFT) prepared on glass substrate were studied in details. We sputter the HfO2/Al2O3 as double gate dielectric layer and the high carrier concentration GZO for bottom gate and source/drain electrodes. Both HfO2 and Al2O3 are transparent high k dielectric, and used to decrease the gate leakage current.
    We use low carrier concentration and higher carrier mobility amorphous InGaZnO as the top active layer to get low threshold voltage, and employ the high mobility and conductivity ZnO as button channel to increase on current. With the double channel structure, one can achieve very low off current and high on/off current ratio.
    Compared to the traditional ITO/ a-IGZO double channel TFT, the developed ZnO / a-IGZO device can resistance a higher annealing temperature for improving on/off ratio and getting lower threshold voltage. As a result, better performances of 1.42×107, 1.2Volt, and 0.33V/dec respectively for on/off current ratio, threshold voltage and SS could be obtained. The performances not higher than the single channel counterpart, but also better than 1.37×107, 1.72Volt and 0.37V/dec respectively for the reported amorphous InGaZnO double channel one.
    Besides, the higher temperature annealing could repair the interface defect, and thus lowering down the threshold voltage 1.2Volt, which is lower than the reported 3.25 V. The overall transparent is about 85%.

    摘要........................................I Abstract......................................III 第一章 導論 1 1-1 前言 1 1-2 論文架構 5 第二章 理論基礎 6 2-1濺鍍理論 6 2-1-1 濺射現象 6 2-1-2 輝光放電 7 2-1-3 沉積現象 8 2-2非晶銦鎵鋅氧化物薄膜結構與性質 9 2-3薄膜電晶體基本結構 10 2-4薄膜電晶體工作原理 11 2-4-1 汲極電流相對於汲極電壓的I-V曲線 11 2-4-2 汲極電流相對於閘極電壓的I-V曲線 13 2-5 薄膜電晶體電性參數 14 第三章 實驗方法與步驟 18 3-1磁控濺鍍系統 18 3-1-1 射頻濺射 18 3-1-2 反應性濺射 19 3-1-3 磁控濺鍍理論 20 3-2 薄膜分析量測儀器 21 3-2-1 掃瞄式電子顯微鏡 21 3-2-2 原子力顯微鏡 22 3-2-3 X光繞射儀 23 3-2-4 霍爾量測 24 3-2-5 膜厚量測儀 24 3-2-6 紫外光/可見光吸收光譜儀 24 3-3 實驗流程 25 3-3-1 基板製作與清洗 26 3-3-2 薄膜濺鍍 26 3-3-3薄膜電晶體製作 27 第四章 薄膜成長量測及特性分析 28 4-1 薄膜分析 28 4-2 氣體流量與絕緣層品質 28 4-2-1 不同氬氣/氧氣流量對氧化鉿薄膜漏電流影響 29 4-2-2 不同氬氣/氧氣流量對氧化鉿薄膜表面形態的影響 30 4-2-3 氧化鉿/氧化鋁雙層介電層結構 31 4-2-4 不同氧化鉿薄膜參數對雙層介電層漏電流影響 31 4-2-5 不同氧氣流量對氧化鋁漏電流影響 32 4-2-6 不同氧氣流量對氧化鋁薄膜表面形態的影響 32 4-3 銦鎵鋅氧化物薄膜 33 4-3-1 氬氣流量對非晶銦鎵鋅氧化物影響 34 4-3-2 氧氣流量對非晶銦鎵鋅氧化物影響 34 4-3-3 不同氧氣流量的非晶銦鎵鋅氧化物透明度比較 36 4-4 鎵摻雜之氧化鋅薄膜 36 第五章 非晶銦鎵鋅氧化物透明薄膜電晶體分析與討論 38 5-1選擇適合參數薄膜電晶體製作與量測 38 5-2 比較單絕緣層與堆疊絕緣層元件 39 5-2-1 絕緣層材料特性 39 5-2-2單絕緣層元件特性 39 5-2-3雙絕緣層元件特性 40 5-2-4單絕緣層與堆疊絕緣層元件特性比較 40 5-3 探討雙層通道元件 41 5-3-1 使用氧化鋅/a-IGZO作為雙層通道層 41 5-3-2 比較退火後氧化鋅/a-IGZO雙通道元件特性 42 5-3-3 使用ITO/a-IGZO作為雙層通道層 42 5-3-4 比較退火後ITO/a-IGZO&ZnO/a-IGZO雙通道元件 43 第六章 結論與未來展望 44 6-1 結論 44 6-2 未來展望 47 參考文獻 48 附表 54 附圖 57 圖表目錄 表3-1薄膜分析之製程參數表 54 表4-1 不同氧流量的元素成分比例 54 表5-1元件製程參數表 55 表5-2單絕緣層與雙絕緣層元件特性比較 55 表5-3雙絕緣層雙通道元件特性比較 56 圖2-1表面濺射原理示意圖 57 圖2-2輝光放電現象示意圖 58 圖2-3薄膜沉積步驟 59 圖2- 4非晶銦鎵鋅氧化物(a-IGZO)之結晶結構 60 圖2- 5 離子氧化物半導體電子傳導軌域示意圖 61 圖2-6薄膜電晶體的構造分為 (a)上閘極 (b)下閘極 62 圖2-7薄膜電晶體的構造分為 (a)交錯型 (b)共面型 62 圖2-8在微小汲極電壓下,不同閘極驅動電壓的變化 63 圖2- 9 固定閘極電壓下,電流隨汲極電壓的變化 64 圖2- 10 汲極電流相對於閘極電壓(IDS-VGS)曲線圖 65 圖2- 11三種估計臨限電壓的方法 66 圖2-12 n+層和聚積電洞層,形成逆偏PN接面,避免IOFF的增加 67 圖2-13 (a) TFT開啟使液晶可穿透(b) TFT關閉使液晶不可穿透 68 圖3-1 射頻磁控濺鍍系統構造圖 69 圖3-2 反應性濺射之模型 70 圖3-3 靶材表面磁力線與電力線的分布 71 圖3-4 電子於正交電磁場的作用下產生 E × B 運動 71 圖3-5 Fe-SEM構造圖 72 圖3-6 EDS示意圖 73 圖3-7 AFM原理圖 74 圖3-8 X-Ray繞射原理及量測示意圖 75 圖3-9 霍爾量測 76 圖4-1 薄膜試片之實驗分析流程 82 圖 4-2 使用 Metal-insulator-ITO結構量測漏電流 82 圖4-3 不同氬氣/氧氣總流量之氧化鉿薄膜漏電流 83 圖4-4(a) 氬氣:氧氣 = 6.25:1.25之氧化鉿EDS圖 83 圖4-4(b) 氬氣:氧氣 = 12.5:2.5之氧化鉿EDS圖 84 圖4-4(c) 氬氣:氧氣 = 18.75:3.75之氧化鉿EDS圖 84 圖4-5(a) 氬氣:氧氣 = 6.25:1.25sccm的氧化鉿Fe-SEM圖 85 圖4-5(b) 氬氣:氧氣 = 12.5:2.5sccm的氧化鉿Fe-SEM圖 85 圖4-5(c) 氬氣:氧氣 = 18.75:3.75sccm的氧化鉿Fe-SEM圖 86 圖4-6(a) 氬氣:氧氣 = 6.25:1.25sccm的氧化鉿AFM圖 86 圖4-6(b) 氬氣:氧氣 = 12.5:2.5sccm的氧化鉿AFM圖 87 圖4-6(c) 氬氣:氧氣 = 18.75:3.75sccm的氧化鉿AFM圖 87 圖4-7 不同氬氣/氧氣總流量的氧化鉿XRD圖 88 圖 4-8 使用 Metal-dual insulator-ITO結構量測漏電流 88 圖4-9 不同參數氧化鉿堆疊氧化鋁薄膜之漏電流 89 圖4-10 不同參數氧化鉿堆疊氧化鋁薄膜之漏電流 89 圖4-11(a) 通氧1sccm的氧化鋁Fe-SEM圖 90 圖4-11(b) 通氧2sccm的氧化鋁Fe-SEM圖 90 圖4-11(c) 通氧3sccm的氧化鋁Fe-SEM圖 91 圖4-12(a) 通氧1sccm的氧化鋁AFM圖 91 圖4-12(b) 通氧2sccm的氧化鋁AFM圖 92 圖4-12(c) 通氧3sccm的氧化鋁AFM圖 92 圖4-13 不同氧氣流量的霍爾遷移率 93 圖4-14(a) 通氬6sccm的a-IGZO Fe-SEM圖 93 圖4-14(b) 通氬8sccm的a-IGZO Fe-SEM圖 94 圖4-14(c) 通氬10sccm的a-IGZO Fe-SEM圖 94 圖4-14(d) 通氬12sccm的a-IGZO Fe-SEM圖 95 圖4-14(e) 通氬14sccm的a-IGZO Fe-SEM圖 95 圖4-15 不同氧流量之a-IGZO對霍爾遷移率 96 圖4-16 不同氧流量a-IGZO的電阻率&電導率 96 圖4-17(a) 無通氧的a-IGZO Fe-SEM圖 97 圖4-17(b) 通氧0.5sccm的a-IGZO Fe-SEM圖 97 圖4-17(c) 通氧1sccm的a-IGZO Fe-SEM圖 98 圖4-17(d) 通氧3sccm的a-IGZO Fe-SEM圖 98 圖4-18 不同氧流量的a-IGZO XRD圖 99 圖4-19(a) 無通氧之a-IGZO EDS圖 99 圖4-19(b) 通氧0.5sccm之a-IGZO EDS圖 100 圖4-19(c) 通氧1sccm之a-IGZO EDS圖 100 圖4-19(d) 通氧3sccm之a-IGZO EDS圖 101 圖4-20 不同氧流量的EDS元素成分 101 圖4-21 不同氧流量的a-IGZO穿透效率圖 102 圖4-22 無通氧、通氧0.5sccm的a-IGZO能隙圖 102 圖4-23(a) 通氧0.5sccm的a-IGZO AFM圖 103 圖4-23(b) 通氧1sccm的a-IGZO AFM圖 103 圖4-23(c) 通氧3sccm的a-IGZO AFM圖 104 圖5-1 元件分析流程圖 105 圖5-2-1(a) 單絕緣層元件輸出特性曲線 105 圖5-2-1(b) 單絕緣層元件轉移特性曲線 106 圖5-2-1(c) 單絕緣層元件汲極電流平方根相對於閘極電壓曲線 106 圖5-2-2(a) 雙絕緣層元件輸出特性曲線 107 圖5-2-2(b) 雙絕緣層元件轉移特性曲線 107 圖5-2-2(c) 雙絕緣層元件汲極電流平方根相對於閘極電壓曲線 108 圖5-2-3 單絕緣層與雙絕緣層元件轉移特性曲線比較 108 圖5-3-1(a) ZnO/a-IGZO雙通道元件輸出特性曲線 109 圖5-3-1 (b) ZnO /a-IGZO雙通道元件轉移特性曲線 109 圖5-3-1(c) ZnO /a-IGZO雙通道元件汲極電流平方根相對於閘極電壓曲線 110 圖5-3-2(a) 退火後ZnO /a-IGZO雙通道元件輸出特性曲線 110 圖5-3-2 (b) 退火後ZnO /a-IGZO雙通道元件轉移特性曲線 111 圖5-3-2(c) 退火後ZnO /a-IGZO雙通道元件汲極電流平方根相對於閘極電壓曲線 111 圖5-3-3無退火與退火ZnO /a-IGZO雙通道元件轉移特性曲線比較 112 圖5-3-4 (a) ITO/a-IGZO雙通道元件輸出特性曲線 112 圖5-3-4 (b) ITO /a-IGZO雙通道元件轉移特性曲線 113 圖5-3-4(c) ITO /a-IGZO雙通道元件汲極電流平方根相對於閘極電壓曲線 113 圖5-3-5(a) 退火後ITO /a-IGZO雙通道元件輸出特性曲線 114 圖5-3-5 (b) 退火後ITO /a-IGZO雙通道元件轉移特性曲線 114 圖5-3-3 無退火與退火ITO /a-IGZO雙通道元件轉移特性曲線比較 115 圖5-3-7 ZnO/a-IGZO雙通道元件之穿透效率圖 115

    [1] 鍾俊元,劉美君,“2008 平面顯示器年鑑”,經濟部 2008年。
    [2] 工研院IEK顯示器研究部,“2010年第四季我國平面顯示器產業回顧與展望”,工研院IEK電子分項,2011年
    [3] Yoshiko Hara,” LCD面板八代廠大戰 Sharp領先群雄”,電子工程專輯 ,2006
    [4] J. Kanicki, F. R. Libsch, J. Griffith, and R. Polastre, "Performance of thin hydro- genated amorphous silicon thin-film transistors," J. Appl. Phys., vol. 69, pp. 2339-45, 1991.
    [5] S. S. Kim, "The World's largest (82-in.) TFT-LCD," SID Int. Symp. Digest Tech. Papers, vol. 36, pp. 1842-1847, 2005.
    [6] S. S. Kim, B. H. You, J. H. Cho, D. G. Kim, B. H. Berkeley, and N. D. Kim, "An 82-in. ultra-definition 120-Hz LCD TV using new driving scheme and advanced super PVA technology," J. SID, vol. 17, pp. 71-78, 2009.
    [7] J.-H. Lan and J. Kanicki, "Planarized copper gate hydrogenated amorphous-silicon thin-film transistors for AM-LCDs," IEEE Electron Device Lett., vol. 20, pp. 129-31, 1999.
    [8] J.-H. Song, H.-L. Ning, W.-G. Lee, S.-Y. Kim, and S.-S. Kim, "Views on the low-resistant bus materials and their process architecture for the larqe-sized post-ultra definition TFT-LCD," Digest Tech. Papers IMID 2008, vol. 8, pp. 9-12, 2008.
    [9] Wen-Chun Wang, Chieng-Chung Kuo, Shin-Tai Lo, Hsi-Rong Han, “ Active matrix organic electroluminescence light emitting diode driving circuit” United States Patent Application Publication, Sep.22, 2005
    [10] P. Roca I Cabarrocas, ”New approaches for the production of nano-, micro-, and polycrystalline silicon thin films”, Phys. Stat. Sol., 1(5), p. 1115, 2004.
    [11] Won Chel Choi, Eun Kyu Kim, and Suk-Ki Min, “Direct formation of nanocrystalline silicon by electron cyclotron resonance chemical vapor deposition”, Appl. Phys. Lett., 70(22), p. 3014, 1997.
    [12] C.-S. Tang, L. L. Smith, C. B. Arthur, and G. N. Parsons, “Stability of low-temperature amorphous silicon thin film transistors formed on glass and transparent plastic substrates”, J. Vac. Sci. Technol. B 18(2), p.683, 2000.
    [13] A. Sazonov and A. Nathan, “120 fabrication technology for a-Si:H thin film transistor on flexible polyimide substrates”, J. Vac. Sci. Technol. A 18(2), p. 780, 2000.
    [14] C. S. McCormick, C. E. Weber, and J. R. Abelson, “An amorphous thin film transistor fabricated at 125 by dc reactive magnetron sputtering”, Appl. Phys. Lett. 70(2), p. 226, 1997.
    [15] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties,” Journal of Applied Physics, vol. 93, p. 1624, 2003.
    [16] D.S Ginley and C.Bright, MRS Bull.,Aug,.15,2000
    [17] T. Minami, MRS Bull.,Aug,. 38,2000
    [18] U. Ozgur, Ya. I. Alivov, C.Liu, A.Teke, M.A. Reshchikov, S.Dogan, V.Avrutin, S.J.Cho, and H. Morkoc, J.Appl. Phys.,98,041301 (2005)
    [19]Arthur Chou, Feng-Cheng Su, Fang-Chen Luo, and Hsing-Chien Tuan, “The Electrical Characteristics of the Amorphous Silicon ThinFilm Transistors with Dual Intrinsic Layers”, J. Electrochem. Soc., Vol. 144, No. 8, 1997.
    [20]Kaichi Fukuda , Nobuo Imai, Shin-ichi Kawamura, “Kunio Matsumura, Nobuki Ibaraki, Journal of Non-Crystalline Solids” ,198-200, pp.1137-140, 1996.
    [21] Alex Kuo”, Tae Kyung Won, and Jerzy Kanicki, “Advanced Multilayer Amorphous Silicon Thin-Film Transistor Structure:Film Thickness Effect on Its Electrical Performance and Contact Resistance”, Japanese Journal of Applied Physics, Vol. 47, No. 5, pp. 3362–3367, 2008.
    [22] Sun Il Kim, Chang Jung Kim, Jae Chul Park, Ihun Song, Sang Wook Kim,” High Performance Oxide Thin Film Transistors with Double Active Layers” , Electron Devices Meeting, IEEE International, 15-17 Dec. 2008.
    [23] S. Chang, Y. Song, S. Lee, S.Y. Lee, and B. Ju, “Efficient suppression of charge trapping in ZnO-based transparent thin film transistors with novel Al2O3/HfO2/Al2O3 structure,” Applied Physics Letters, vol. 92, pp. 192104-1~3, 2008.
    [24] 賴耿陽,“IC 製程之濺射技術”,復漢出版社 1997年。
    [25] 王福貞,聞立時,“表面沉積技術”,機械工業出版社,pp.114-204。
    [26] 莊達人,”VLSI製造技術”,高立圖書股份有限公司,1995年。
    [27] M. Orita, H. Tanji, M. Mizuno, H. Adachi, and I. Tanaka, ” Mechanism of electrical conductivity of transparent InGaZnO4” ,Phys. Rev. B 61, 1811 2000.
    [28] J. K. Jeong, J. H. Jeong, J. H. Choi, J. S. Im, S. H. Kim, H. W. Yang, K. N. Kang, K. S. Kim, T. K. Ahn, H.-J. Chung, M. Kim, B. S. Gu, J.-S. Park, Y.-G. Mo, H. D. Kim,and H.K.Chung, "Distinguished paper:12.1-inch WXGA AMOLED display driven by indium-gallium-zinc oxide TFTs array," SID Int. Symp. Digest Tech. Papers, pp. 1-4, 2008.
    [29] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature, vol. 432, pp. 488-492, 2004.
    [30] J.-H.Lee, D.-H.Kim, D.-J.Yang, S.-Y. Hong, K.-S.Yoon, P.-S. Hong, C.-O. Jeong, H.-S. Park, S. Y. Kim, S. K. Lim, S. S. Kim, K.-S. Son, T.-S. Kim, J.-Y. Kwon, and S.-Y. Lee, "World's largest (15-inch) XGA AMLCD panel using IGZO oxide TFT,"
    [31] H. Hosono, ” Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application ” Journal of Non-Crystalline ,Solids Volume 352, Issues 9-20, Pages 851-858, 15 June 2006.
    [32] A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4 ” Thin Solid Films, Volume 486, Issues 1-2, 22 August 2005, Pages 38-41
    [33] B. Mebarji, S. Sumiya, R. Yoshida, M. Ito and T. Tsukada, Materials Letters, 41, no. 16, 1999.
    [34] D. Hong, “Process Development and Modeling of Thin-Film Transistors”, Master's Thesis, Oregon State University, 2005.
    [35] J. Puigdollers, C. Voz, A. Orpella, I. Martin, D. Soler, M. Fonrodona, J. Bertomeu, J. Andreu, R. Alcubilla, “Electronic transport in low temperature nanocrystalline silicon thin-film transistors obtained by hot-wire CVD,” Journal of Non-Crystalline Solids, vol. 299–302, pp. 400–404, 2002.
    [36] K. Lee, M. Shur, T. A. Fjeldly, T. Ytterda, “Semiconductor device modeling for VLSI,”1 ed. New jersey:Prentice Hall, Inc., 1993.
    [37] M. S. Shur, H. C. Slade, M. D. Jacunski, A. A. Owusu, T. Ytterdal, “SPICE models for amorphous silicon and polysilicon thin film transistors,” Journal of the Electrochemical Society, 144, pp. 2833-9, 1997.
    [38] Dosev, D. Konstantinov, “Fabrication, characterisation and modelling of nanocrystalline silicon thin-film transistors obtained by hot-wire chemical vapour deposition.” ,in PhD thesis. Barcelona: Universitat Politècnica de Catalunya (UPC).
    [39] S. M. Han, J. H. Park, H. S. Shin, Y. H. Choi, M. K. Han,“High Performance Nanocrystalline-Si TFT Fabricated at 150℃ Using ICP-CVD”, IEEE, 2005.
    [40] F. Shinoki and A. Itoh, “Mechanism of rf reactive sputtering,”J. Appl. Phys., vol. 46, p. 3381, 1975.
    [41] E. Bachari, G. Baud, S. Amor, and M. Jacquet, “Structure and optical properties of sputtered ZnO films”, Thin Solid Films, vol. 348, no. 1, pp. 165-172, 1999.
    [42] 王宏文,淺談表面聲波感應器,工業材料--精密陶瓷專輯89期,民國95年。
    [43] X. Liu and D. Li, “Influence of charged particle bombardment and sputtering parameters on the properties of HfO2 films prepared by dc reactive magnetron sputtering,” Applied Surface Science, vol. 253, pp. 2143-2147, Dec. 2006.
    [44] D. C. Gilmer, R. Hegde, R. Cotton, R. Garcia, V. Dhandapani, D. Triyoso, D. Roan, A. Franke, R. Rai, L. Prabhu, C. Hobbs, J. M. Grant, L. La, S. Samavedam, B. Taylor, H. Tseng, and P. Tobin, “Compatibility of polycrystalline silicon gate deposition with HfO2 and Al2O3 ÕHfO2 gate dielectrics” Applied Physics Letters, volume 81, number 7, 12 August 2002.
    [45] C.H. Jung, D.J. Kim, Y.K. Kang, D.H. Yoon, “Transparent amorphous In–Ga–Zn–O thin film as function of various gas flows for TFT applications” Thin Solid Films, 517 (2009) ,4078–4081.
    [46] Y j Jiang, D x Zhang, H k Cai, K Tao, Y Xue, Y p Sui, L s Wang, J f Zhao, J Wang, “Influence of the gas flow of Argon and the distance between substrate and plasma on properties of Al-doped zinc oxide films”, Journal of Physics: Conference, Series 152 (2009) 012030.
    [47] 蔡明倫,李正中, “ITO 鍍膜於PET 基板上之研究”,國立中央大學光電科學研究所碩士論文,民國九十四年七月。
    [48] Ji-Hoon Shin, Duck-Kyun Choi, “Eect of Oxygen on the Optical and the Electrical Properties of Amorphous InGaZnO Thin Films Prepared by RF Magnetron Sputtering”, Journal of the Korean Physical Society, Vol. 53, No. 4, pp. 2019-2023, October 2008.
    [49] J. Tauc, Amorphous and liquid semiconductors. New York: Plenum Press, 1974.
    [50] 魏中聖,蕭俊卿,沈弘俊,” 射頻濺鍍功率對氧化鋅薄膜機械性質之影響”,國立台灣大學奈米機電中心,國立台灣大學應用力學研究所,真空科技,二十卷第一期,民國九十六年十月。
    [51] M. Jones, Y. Kwon, and D. Norton, “Dielectric constant and current transport for HfO2 thin films on ITO,” Applied Physics A, vol. 81, pp. 285-288, 2005.
    [52] C.T. Hsu, Y.K. Su, and M. Yokoyama, “High Dielectric Constant of RF-Sputtered HfO2 Thin Films,” Japanese Journal of Applied Physics, vol. 31, pp. 2501-2504, 1992.
    [53] Robertson J , “Electronic structure and band offsets of high-dielectric-constant gate oxides”, MRS BULLETIN . vol. 27, pp. 217-221, 2002.
    [54] Robertson, J, “High dielectric constant oxides”, Eur. Phys. J. Appl. Phys. Vol. 28, pp. 265-291, 2004.
    [55] 許家榮,方炎坤, “氧化鋅透明式薄膜電晶體應用於大型平面顯示器之研究”,國立成功大學電機工程學系碩士論文,民國98年6月。
    [56] H.Kim, C.M.Gilmore, A.Pique, J.S.Horwitz, H.Mattoussi, H.Murata, Z.H. Kafafi , D.B. Chrisey,” Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices ” J.Appl Phys.,86, 6451, 2001.
    [57] S.I Kim, J.S Park, C.J Kim, J.C Park,“High Reliable and Manufacturable Gallium Indium Zinc Oxide Thin-Film Transistors Using the Double Layers as an Active Layer Journal of The Electrochemical Society, 0013-4651,2009,156

    無法下載圖示 校內:2016-07-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE