| 研究生: |
張惟昭 Chang, Wei-Chao |
|---|---|
| 論文名稱: |
玻璃基板上成長高性能雙層通道銦鎵鋅氧化物透明薄膜電晶體特性之研究 The Study of High Performance Dual Channel a-IGZO Full Transparent Thin Film Transistor on Glass Substrate |
| 指導教授: |
方炎坤
Fang, Yean-Kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 雙層通道 、銦鎵鋅氧化物 、透明薄膜電晶體 |
| 外文關鍵詞: | Dual Channel, a-IGZO, Full Transparent, TFT |
| 相關次數: | 點閱:87 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究在一般玻璃基板上成長大面積平面顯示器用高性能銦鎵鋅氧化物雙通道透明薄膜電晶體。本元件使用射頻磁控濺鍍氧化鉿/氧化鋁(HfO2/Al2O3)作為堆疊絕緣層閘極。並濺鍍高載子濃度的氧化鋅鎵(GZO)作為元件的下閘極、源極與汲極。實驗顯示以氧化鉿/氧化鋁組成的雙層閘極絕緣能有效降低閘極漏電流。
利用具有低載子濃度以及比非晶矽高的載子移動率的非晶銦鎵鋅氧化物作為雙層通道中的上主動層可以讓電晶體有低的臨界電壓。下主動層則利用具有高載子移動率、較佳導電度的純氧化鋅來增加開電流(on-current)以提昇開關電流比(On/Off current ratio)。但傳統的ITO/a-IGZO雙通道薄膜電晶體,在退火後會因ITO再結晶,導致關電流提高使開關電流比下降。故本研究改用ZnO/a-IGZO做為雙通道主動層。實驗證實其電流開關比,臨界電壓及次臨界擺幅可分別達到1.37×107, 1.72Volt,及SS=0.37V/dec。這些特性不但較單主動層為佳,且優於已報導的銦鎵鋅氧化物雙通道薄膜電晶體1×107的電流開關比,臨界電壓2.75Volt,SS=1.22V/dec。
此外,又藉由退火可修復電晶體元件介面間的缺陷以降低臨界電壓。在250℃的溫度下退火10分鐘, ZnO/a-IGZO雙通道電晶體的臨界電壓可由1.72Volt下降至1.2Volt,電流開關比微幅增加至1.42×107,場效載子遷移率5.5 cm2/Vs,次臨界擺幅降至0.33 V/dec且透明度可保持>85%以上。
In this thesis, the high performance amorphous InGaZnO double channel full transparent thin film transistors (FTTFT) prepared on glass substrate were studied in details. We sputter the HfO2/Al2O3 as double gate dielectric layer and the high carrier concentration GZO for bottom gate and source/drain electrodes. Both HfO2 and Al2O3 are transparent high k dielectric, and used to decrease the gate leakage current.
We use low carrier concentration and higher carrier mobility amorphous InGaZnO as the top active layer to get low threshold voltage, and employ the high mobility and conductivity ZnO as button channel to increase on current. With the double channel structure, one can achieve very low off current and high on/off current ratio.
Compared to the traditional ITO/ a-IGZO double channel TFT, the developed ZnO / a-IGZO device can resistance a higher annealing temperature for improving on/off ratio and getting lower threshold voltage. As a result, better performances of 1.42×107, 1.2Volt, and 0.33V/dec respectively for on/off current ratio, threshold voltage and SS could be obtained. The performances not higher than the single channel counterpart, but also better than 1.37×107, 1.72Volt and 0.37V/dec respectively for the reported amorphous InGaZnO double channel one.
Besides, the higher temperature annealing could repair the interface defect, and thus lowering down the threshold voltage 1.2Volt, which is lower than the reported 3.25 V. The overall transparent is about 85%.
[1] 鍾俊元,劉美君,“2008 平面顯示器年鑑”,經濟部 2008年。
[2] 工研院IEK顯示器研究部,“2010年第四季我國平面顯示器產業回顧與展望”,工研院IEK電子分項,2011年
[3] Yoshiko Hara,” LCD面板八代廠大戰 Sharp領先群雄”,電子工程專輯 ,2006
[4] J. Kanicki, F. R. Libsch, J. Griffith, and R. Polastre, "Performance of thin hydro- genated amorphous silicon thin-film transistors," J. Appl. Phys., vol. 69, pp. 2339-45, 1991.
[5] S. S. Kim, "The World's largest (82-in.) TFT-LCD," SID Int. Symp. Digest Tech. Papers, vol. 36, pp. 1842-1847, 2005.
[6] S. S. Kim, B. H. You, J. H. Cho, D. G. Kim, B. H. Berkeley, and N. D. Kim, "An 82-in. ultra-definition 120-Hz LCD TV using new driving scheme and advanced super PVA technology," J. SID, vol. 17, pp. 71-78, 2009.
[7] J.-H. Lan and J. Kanicki, "Planarized copper gate hydrogenated amorphous-silicon thin-film transistors for AM-LCDs," IEEE Electron Device Lett., vol. 20, pp. 129-31, 1999.
[8] J.-H. Song, H.-L. Ning, W.-G. Lee, S.-Y. Kim, and S.-S. Kim, "Views on the low-resistant bus materials and their process architecture for the larqe-sized post-ultra definition TFT-LCD," Digest Tech. Papers IMID 2008, vol. 8, pp. 9-12, 2008.
[9] Wen-Chun Wang, Chieng-Chung Kuo, Shin-Tai Lo, Hsi-Rong Han, “ Active matrix organic electroluminescence light emitting diode driving circuit” United States Patent Application Publication, Sep.22, 2005
[10] P. Roca I Cabarrocas, ”New approaches for the production of nano-, micro-, and polycrystalline silicon thin films”, Phys. Stat. Sol., 1(5), p. 1115, 2004.
[11] Won Chel Choi, Eun Kyu Kim, and Suk-Ki Min, “Direct formation of nanocrystalline silicon by electron cyclotron resonance chemical vapor deposition”, Appl. Phys. Lett., 70(22), p. 3014, 1997.
[12] C.-S. Tang, L. L. Smith, C. B. Arthur, and G. N. Parsons, “Stability of low-temperature amorphous silicon thin film transistors formed on glass and transparent plastic substrates”, J. Vac. Sci. Technol. B 18(2), p.683, 2000.
[13] A. Sazonov and A. Nathan, “120 fabrication technology for a-Si:H thin film transistor on flexible polyimide substrates”, J. Vac. Sci. Technol. A 18(2), p. 780, 2000.
[14] C. S. McCormick, C. E. Weber, and J. R. Abelson, “An amorphous thin film transistor fabricated at 125 by dc reactive magnetron sputtering”, Appl. Phys. Lett. 70(2), p. 226, 1997.
[15] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties,” Journal of Applied Physics, vol. 93, p. 1624, 2003.
[16] D.S Ginley and C.Bright, MRS Bull.,Aug,.15,2000
[17] T. Minami, MRS Bull.,Aug,. 38,2000
[18] U. Ozgur, Ya. I. Alivov, C.Liu, A.Teke, M.A. Reshchikov, S.Dogan, V.Avrutin, S.J.Cho, and H. Morkoc, J.Appl. Phys.,98,041301 (2005)
[19]Arthur Chou, Feng-Cheng Su, Fang-Chen Luo, and Hsing-Chien Tuan, “The Electrical Characteristics of the Amorphous Silicon ThinFilm Transistors with Dual Intrinsic Layers”, J. Electrochem. Soc., Vol. 144, No. 8, 1997.
[20]Kaichi Fukuda , Nobuo Imai, Shin-ichi Kawamura, “Kunio Matsumura, Nobuki Ibaraki, Journal of Non-Crystalline Solids” ,198-200, pp.1137-140, 1996.
[21] Alex Kuo”, Tae Kyung Won, and Jerzy Kanicki, “Advanced Multilayer Amorphous Silicon Thin-Film Transistor Structure:Film Thickness Effect on Its Electrical Performance and Contact Resistance”, Japanese Journal of Applied Physics, Vol. 47, No. 5, pp. 3362–3367, 2008.
[22] Sun Il Kim, Chang Jung Kim, Jae Chul Park, Ihun Song, Sang Wook Kim,” High Performance Oxide Thin Film Transistors with Double Active Layers” , Electron Devices Meeting, IEEE International, 15-17 Dec. 2008.
[23] S. Chang, Y. Song, S. Lee, S.Y. Lee, and B. Ju, “Efficient suppression of charge trapping in ZnO-based transparent thin film transistors with novel Al2O3/HfO2/Al2O3 structure,” Applied Physics Letters, vol. 92, pp. 192104-1~3, 2008.
[24] 賴耿陽,“IC 製程之濺射技術”,復漢出版社 1997年。
[25] 王福貞,聞立時,“表面沉積技術”,機械工業出版社,pp.114-204。
[26] 莊達人,”VLSI製造技術”,高立圖書股份有限公司,1995年。
[27] M. Orita, H. Tanji, M. Mizuno, H. Adachi, and I. Tanaka, ” Mechanism of electrical conductivity of transparent InGaZnO4” ,Phys. Rev. B 61, 1811 2000.
[28] J. K. Jeong, J. H. Jeong, J. H. Choi, J. S. Im, S. H. Kim, H. W. Yang, K. N. Kang, K. S. Kim, T. K. Ahn, H.-J. Chung, M. Kim, B. S. Gu, J.-S. Park, Y.-G. Mo, H. D. Kim,and H.K.Chung, "Distinguished paper:12.1-inch WXGA AMOLED display driven by indium-gallium-zinc oxide TFTs array," SID Int. Symp. Digest Tech. Papers, pp. 1-4, 2008.
[29] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature, vol. 432, pp. 488-492, 2004.
[30] J.-H.Lee, D.-H.Kim, D.-J.Yang, S.-Y. Hong, K.-S.Yoon, P.-S. Hong, C.-O. Jeong, H.-S. Park, S. Y. Kim, S. K. Lim, S. S. Kim, K.-S. Son, T.-S. Kim, J.-Y. Kwon, and S.-Y. Lee, "World's largest (15-inch) XGA AMLCD panel using IGZO oxide TFT,"
[31] H. Hosono, ” Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application ” Journal of Non-Crystalline ,Solids Volume 352, Issues 9-20, Pages 851-858, 15 June 2006.
[32] A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4 ” Thin Solid Films, Volume 486, Issues 1-2, 22 August 2005, Pages 38-41
[33] B. Mebarji, S. Sumiya, R. Yoshida, M. Ito and T. Tsukada, Materials Letters, 41, no. 16, 1999.
[34] D. Hong, “Process Development and Modeling of Thin-Film Transistors”, Master's Thesis, Oregon State University, 2005.
[35] J. Puigdollers, C. Voz, A. Orpella, I. Martin, D. Soler, M. Fonrodona, J. Bertomeu, J. Andreu, R. Alcubilla, “Electronic transport in low temperature nanocrystalline silicon thin-film transistors obtained by hot-wire CVD,” Journal of Non-Crystalline Solids, vol. 299–302, pp. 400–404, 2002.
[36] K. Lee, M. Shur, T. A. Fjeldly, T. Ytterda, “Semiconductor device modeling for VLSI,”1 ed. New jersey:Prentice Hall, Inc., 1993.
[37] M. S. Shur, H. C. Slade, M. D. Jacunski, A. A. Owusu, T. Ytterdal, “SPICE models for amorphous silicon and polysilicon thin film transistors,” Journal of the Electrochemical Society, 144, pp. 2833-9, 1997.
[38] Dosev, D. Konstantinov, “Fabrication, characterisation and modelling of nanocrystalline silicon thin-film transistors obtained by hot-wire chemical vapour deposition.” ,in PhD thesis. Barcelona: Universitat Politècnica de Catalunya (UPC).
[39] S. M. Han, J. H. Park, H. S. Shin, Y. H. Choi, M. K. Han,“High Performance Nanocrystalline-Si TFT Fabricated at 150℃ Using ICP-CVD”, IEEE, 2005.
[40] F. Shinoki and A. Itoh, “Mechanism of rf reactive sputtering,”J. Appl. Phys., vol. 46, p. 3381, 1975.
[41] E. Bachari, G. Baud, S. Amor, and M. Jacquet, “Structure and optical properties of sputtered ZnO films”, Thin Solid Films, vol. 348, no. 1, pp. 165-172, 1999.
[42] 王宏文,淺談表面聲波感應器,工業材料--精密陶瓷專輯89期,民國95年。
[43] X. Liu and D. Li, “Influence of charged particle bombardment and sputtering parameters on the properties of HfO2 films prepared by dc reactive magnetron sputtering,” Applied Surface Science, vol. 253, pp. 2143-2147, Dec. 2006.
[44] D. C. Gilmer, R. Hegde, R. Cotton, R. Garcia, V. Dhandapani, D. Triyoso, D. Roan, A. Franke, R. Rai, L. Prabhu, C. Hobbs, J. M. Grant, L. La, S. Samavedam, B. Taylor, H. Tseng, and P. Tobin, “Compatibility of polycrystalline silicon gate deposition with HfO2 and Al2O3 ÕHfO2 gate dielectrics” Applied Physics Letters, volume 81, number 7, 12 August 2002.
[45] C.H. Jung, D.J. Kim, Y.K. Kang, D.H. Yoon, “Transparent amorphous In–Ga–Zn–O thin film as function of various gas flows for TFT applications” Thin Solid Films, 517 (2009) ,4078–4081.
[46] Y j Jiang, D x Zhang, H k Cai, K Tao, Y Xue, Y p Sui, L s Wang, J f Zhao, J Wang, “Influence of the gas flow of Argon and the distance between substrate and plasma on properties of Al-doped zinc oxide films”, Journal of Physics: Conference, Series 152 (2009) 012030.
[47] 蔡明倫,李正中, “ITO 鍍膜於PET 基板上之研究”,國立中央大學光電科學研究所碩士論文,民國九十四年七月。
[48] Ji-Hoon Shin, Duck-Kyun Choi, “Eect of Oxygen on the Optical and the Electrical Properties of Amorphous InGaZnO Thin Films Prepared by RF Magnetron Sputtering”, Journal of the Korean Physical Society, Vol. 53, No. 4, pp. 2019-2023, October 2008.
[49] J. Tauc, Amorphous and liquid semiconductors. New York: Plenum Press, 1974.
[50] 魏中聖,蕭俊卿,沈弘俊,” 射頻濺鍍功率對氧化鋅薄膜機械性質之影響”,國立台灣大學奈米機電中心,國立台灣大學應用力學研究所,真空科技,二十卷第一期,民國九十六年十月。
[51] M. Jones, Y. Kwon, and D. Norton, “Dielectric constant and current transport for HfO2 thin films on ITO,” Applied Physics A, vol. 81, pp. 285-288, 2005.
[52] C.T. Hsu, Y.K. Su, and M. Yokoyama, “High Dielectric Constant of RF-Sputtered HfO2 Thin Films,” Japanese Journal of Applied Physics, vol. 31, pp. 2501-2504, 1992.
[53] Robertson J , “Electronic structure and band offsets of high-dielectric-constant gate oxides”, MRS BULLETIN . vol. 27, pp. 217-221, 2002.
[54] Robertson, J, “High dielectric constant oxides”, Eur. Phys. J. Appl. Phys. Vol. 28, pp. 265-291, 2004.
[55] 許家榮,方炎坤, “氧化鋅透明式薄膜電晶體應用於大型平面顯示器之研究”,國立成功大學電機工程學系碩士論文,民國98年6月。
[56] H.Kim, C.M.Gilmore, A.Pique, J.S.Horwitz, H.Mattoussi, H.Murata, Z.H. Kafafi , D.B. Chrisey,” Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices ” J.Appl Phys.,86, 6451, 2001.
[57] S.I Kim, J.S Park, C.J Kim, J.C Park,“High Reliable and Manufacturable Gallium Indium Zinc Oxide Thin-Film Transistors Using the Double Layers as an Active Layer Journal of The Electrochemical Society, 0013-4651,2009,156
校內:2016-07-27公開