| 研究生: |
李静怡 Alfarizi, Ahmad |
|---|---|
| 論文名稱: |
探討文旦枝生物炭施用對土壤 pH 與細菌群聚結構之影響 Investigation of the Effects of Pomelo Branch Biochar Application on Soil pH and Bacterial Community Structure. |
| 指導教授: |
黃兆立
Huang, Chao-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 熱帶植物與微生物科學研究所 Institute of Tropical Plant Sciences |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 生物炭 、土壤 pH 、土壤微生物群落 、熱裂解 、總體基因體學 |
| 外文關鍵詞: | Biochar, Soil pH, Soil microbial communities, Pyrolysis, Metagenomics |
| 相關次數: | 點閱:34 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生物炭是一種透過有機物質熱裂解產生的產品,因其改善土壤肥力和作物生產力、吸收土壤中的污染物以及通過碳封存緩解氣候變化的潛力,受到廣泛關注。然而,相較於其他有機改良劑如糞肥,關於生物炭對土壤微生物群落和酶活性的短期和長期影響的資訊較少。大多數研究表明,生物炭不僅改變了土壤養分含量,還對土壤微生物群落產生了影響。然而,生物炭 施用量對土壤 pH 值和微生物的影響尚未完全瞭解。此外,不同的生物炭施用量可能會影響土壤 pH 值和土壤微生物群落。在本研究中,我們旨在確定來自文旦枝的生物炭施用對土壤 pH 值和土壤樣本中細菌群落結構的影響。在本實驗中,使用了1.25升的花盆,每個花盆含有 500 克土壤。實驗包含四個處理,即對照處理(CK)、結合不同濃度的土壤生物炭處理 BC1、BC2 和 BC3。在本研究中,我們發現生物炭的添加有助於提高土壤 pH 值。在生物炭施用的情況下,生物炭處理(BC1、BC2 和 BC3)顯著提高了土壤pH值。我們發現,在90天內,3%的生物炭(BC3)處理的土壤pH值增幅最高。對照組(CK)顯示土壤 pH 值變化很小,表明未經處理的自然穩定性。然而,1%的生物炭(BC1)處理未顯示顯著的 pH 變化。根據 Shannon 多樣性指數,M1BC2 組的生物多樣性中位數最高,而 M3BC3 組的數值最低。M1BC2 促進了生物多樣性,使其成為最有效的處理方法。M3BC2 也支援了較高的生物多樣性,但具有稍高的變異性。因此,我們得出結論,2% 的生物炭(BC2)處理在提高土壤pH值的同時保持了生態穩定性,是土壤管理的推薦方法。
Biochar, produced through the pyrolysis of organic materials, has garnered significant interest for its potential to enhance soil fertility and crop yields, absorb soil pollutants, and sequester carbon to help combat climate change. However, there is limited information on both the short- and long-term impacts of biochar on soil microbial communities and enzyme activities compared to other organic amendments like manure. While existing studies have demonstrated that biochar can alter soil nutrient content and affect microbial communities, the effect of varying biochar amounts on soil pH and microbial populations are not yet fully understood. This study aims to investigate the impact of biochar derived from pomelo branches on soil pH and bacterial community structure across different application rates. For this experiment, 1.25-liter pots were used, each containing 500 grams of soil. The experiment contained four treatments, i.e., control treatment (CK), biochar (C) treatment combined with soil BC1 BC2 and BC3. In this study, we found the addition of biochar application effects on improving of soil pH. In this case of the biochar application, biochar treatments (BC1, BC2, and BC3) significantly increased soil pH. We found the higher increasing values of soil pH observed with 3% biochar (BC3) over 90 days. The control group (CK) showed minimal changes in soil pH, indicating natural stability without treatment. However, 1% biochar (BC1) showed no significant pH change. Based on the Shannon Diversity index, the highest median biodiversity was observed in the M1BC2group, while the M3BC3 group had the lowest value. M1BC2 promoted the biodiversity, making it the most effective treatment. M3BC2 also supported high biodiversity but with slightly higher variability. Accordingly, we conclude that 2% biochar (BC2) treatment is optimal for enhancing soil pH while maintaining ecological stability, making it the recommended approach for soil management.
Agbede T.M Effects of green manures and NPK fertilizer on soil properties, tomato yield and quality in the forest-savanna ecology of Nigeria Exp. Agric.(2018)
Ameloot, N.; Graber, E.R.; Verheijen, F.G.A.; De Neve, S. Interactions between biochar stability and soil organisms: Review and research needs. Eur. J. Soil Sci. 2013, 64, 379–390.
Ameur, F. Zehetner, S. Johnen, L. Jöchlinger, G. Pardeller, B. Wimmer, F. Rosner, F. Faber,G. Dersch, S. Zechmeister-BoltensternActivated biochar alters activities of carbon and nitrogen acquiring soil enzyme. Pedobiologia, 69 (2018). pp. 1-10
Aller DM, Archontoulis SV, Zhang W, Sawadgo W, Laird DA, Moore K (2018) Long term biochar effects on corn yield, soil quality and profitability in the US Midwest. Field Crops Res 227:30–40.
Blanco-Canqui, H. (2021). Biochar and soil physical properties. Soil Science Society of America Journal, 81, 687–711.
Bolan N. S., Hoang S. A., Beiyuan J., Gupta S., Hou D., Karakoti A., et al. (2021). Multifunctional applications of biochar beyond carbon storage. Int. Mater. Rev. 67, 150–200.
Brendova, K.; Szakova, J.; Lhotka, M.; Krulikovska, T.; Puncochar, M.; Tlustos, P. Biochar physicochemical parameters as a result of feedstock material and pyrolysis temperature: Predictable for the fate of biochar in soil Environment. Geochem. Health (2017), 39,1381–1395.
Chan et al. Agronomic values of greenwaste biochar as a soil amendmentAust. J. Soil Res.(2017)
Chernov, A.K. Tkhakakhova, O.V. Kutovaya, 2015, published in Pochvovedenie, (2015, No.4, pp. 462–468.
Dai Z., Barberán A., Li Y., Brookes P.C., Xu J. (2017): Bacterial com- munity composition associated with pyrogenic organic matter (biochar) varies with pyrolysis temperature and colonisation en- vironment. MSphere, 2: e00085-17.
Dai et.,al (2017): X. Zhang, C. Tang, N. Muhammad, J. Wu, P.C. Brookes, J. XuPotential role of biochars in decreasing soil acidification.
De Vries, F.T.; Griffiths, R.I.; Bailey, M.; Craig, H.; Girlanda, M.; Gweon, H.S.; Hallin, S.; Kaisermann, A.; Keith, A.M.; Kretzschmar,M.; et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 2018, 9, 3033.
Dimitriu, P.A., and Grayston, S.J. (2010). Relationship between soil properties and patterns of bacterial diversity across reclaimed and natural boreal forest soils. Microb. Ecol. 59(3): 563–573.
Gomez, J.D.; Denef, K.; Stewart, C.E.; Zheng, J.; Cotrufo, M.F. Biochar addition rate influences soil microbial abundance and activity in temperate soils. Eur. J. Soil Sci. (2014), 65, 28–39.
Gou M.M., Qu Z.Y., Wang F., Gao X.Y., Hu M. (2018): Progress in research on biochar affecting soil-water environment and carbon sequestration-mitigating emissions in agricultural fields. Transactions of the Chinese Society for Agricultural Machinery, 49: 1–12.
Gul S., Whalen J.K., Thomas B.W., Sachdeva V., Deng H.Y. (2015): Physico-chemical
properties and microbial responses in biochar- amended soils: mechanisms and future directions. Agriculture, Ecosystems and Environment, 206: 46–59.
Hussain S., Shaukat M., Ashraf M., Zhu C., Jin Q., Zhang J. (2020). Salinity stress in arid and semi-arid climates: effects and management in field crops. Climate Change Agric. 13, 201–226.
Ingham, E.R. (2009). Soil Biology Primer, Chapter 4: Soil Fungus. Ankeny IA: Pg. 22-23.
Jones, R.T., Robeson, M.S., Lauber, C.L., Hamady, M., Knight, R., and Fierer, N. 2009. A comprehensive survey of soil acidobac- terial diversity using pyrosequencing and clone library anal- yses. ISME J. 3(4): 442–453.
Khan I., Mahmood S., Chattha M. U., Bilal Chattha M., Ahmad S., Awan M. I., et al..(2023).Organic amendments improved the productivity and bio-fortification of fine rice by improving physiological responses and nutrient homeostasis under salinity stress.Plants 12, 1644.
Khodadad, C.L.M., Zimmerman, A.R., Green, S.J., Uthandi, S., Foster, J.S., 2011. Taxa- specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biology and Biochemistry 43, 385e392.
Laird D.A., Novak J.M., Collins H.P., Ippolito J.A., Karlen D.L., Lentz R.D., Sistani K.R., Spokas K., Van Pelt R.S. (2017): Multi-year and multi-location soil quality and crop biomass yield responses to hardwood fast pyrolysis biochar. Geoderma, 289: 46–53.
Liang C.F., Gascó G., Fu S.L., Méndez A., Paz-Ferreiro J. (2016): Biochar from pruning residues as a soil amendment: effects of pyrolysis temperature and particle size. Soil and Tillage Research, 164: 3–10.
Li C.B., Zhang J.Q., Chen X., Zhang J.G., Zhai X., Lin A.F. (2018): Effect of biochar application on soil health and its potential risks to flue-cured tobacco production. Chinese Tobacco Science, 39: 91–97.
Li, S.; Li, Z.; Feng, X.; Zhou, F.; Wang, J.; Li, Y. Effects of biochar additions on the soil chemical properties, bacterial community structure and rape growth in an acid purple soil. Plant Soil Environ. 2021, 67, 121–129.
Li, X., Wu, M., and Xue, Y. (2022). Nickel-loaded shrimp shell biochar enhances batch anaerobic digestion of food waste. Bioresour. Technol. 352:127092.
Masiello, C.A.; Chen, Y.; Gao, X.; Liu, S.; Cheng, H.-Y.; Bennett, M.R.; Rudgers, J.A.; Wagner, D.S.; Zygourakis, K.; Silberg, J.J. Biochar and Microbial Signaling: Production Conditions Determine Effects on Microbial Communication. Environ. Sci. Technol. 2013, 47, 11496–11503.
Molnár M., Vaszita E., Farkas É., Ujaczki É., Fekete-Kertész I., Tolner M., Klebercz O.,Kirchkeszner C., Gruiz K., Uzinger N., Feigl V. (2016): Acidic sandy soil improvement with biochar – a micro- cosm study. Science of The Total Environment, 563–564: 855–865.
Meier, S.; Moore, F.; González, M.E.; Medina, J.; Campos, P.; Khan, N.; Cumming, J.;
Sanhueza, M.; Mejías, J.; Morales, A.; et al. Effects of three biochars on copper immobilization and soil microbial communities in a metal-contaminated soil using a metallophyte and two agricultural plants. Environ. Geochem. Health 2021, 43, 1441– 1456.
Purakayastha T.J., Bera T., Bhaduri D., Sarkar B., Mandal S., Wade P., Kumari S., Biswas S., Menon M., Pathak H., Tsang D.C.W. (2019): A review on biochar modulated soil condition improve- ments and nutrient dynamics concerning crop yields: pathways to climate change mitigation and global food security. Chemos phere, 227: 345–365.
Qin Y.X., Li G.Y., An T.C., Yang Z.F. (2021): Advances in ecological and health risks of biochar during environmental applications. China Science Bulletin, 66: 5–20.
QDEHP (2017). Queensland Department of Environment and Heritage Protection-QDEHP Rodríguez-Vila, A.; Forján, R.; Guedes, R.S.; Covelo, E.F. Changes on the Phytoavailability of Nutrients in a Mine Soil Reclaimed with Compost and Biochar. Water Air Soil Pollut.(2016), 227, 453.
Ramezanzadeh, M., Afshar, H. S., & Ahmadvand, G. (2023). Impact of irrigation water on ion concentrations in soil. Journal of Environmental Science and Engineering B,
Shaaban M., Van Zwieten L., Bashir S., Younas A., Núñez-Delga- do A., Chhajro M.A., Kubar K.A., Ali U., Rana M.S., Mehmood M.A., Hu R.G. (2018): A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. Journal of Environmental Management, 228: 429–440.
Slessarev .,J. P. Schimel. (2016) Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, USA Tan, P.Y. Ong, J.J. Klemeš, C.P.C. Bong, C.J. Li, Y.S. Gao, C.T. Lee Mitigation of soil salinity using biochar derived from lignocellulosic Biomass-.-. Chem. Eng. Trans., 83 (2021), pp. 235-240
Tan Z.X., Lin C.S.K., Ji X.Y., Rainey T.J. (2017): Returning biochar to fields: a review.
Applied Soil Ecology, 116: 1–11.
Verheijen F.G.A., Zhuravel A., Silva F.C., Amaro A., Ben-Hur M., and Keizer J.J. 2019.
The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs sandy loam soil in a column experiment. Geoderma, 347: 194–202.
Wang Y.Y., Jing X.R., Li L.L., Liu W.J., Tong Z.H., Jiang H. (2017): Biotoxicity evaluations of three typical biochars using a simulated system of fast pyrolytic biochar extracts on organisms of three king- doms. Acs Sustainable Chemistry and Engineering, 5: 481–488.
Wüst et al., 2016 in Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH. Prokaryotic Nomenclature Up-to-Date (PNU). Checklist dataset
Yuan, J., and Xu, R. (2011). The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use Manage. 27, 110–115
Zhang YL, Chen H, Bai SH, Menke C, Xu ZH (2017) Interactive effects of bio‐ char addition and elevated carbon dioxide concentration on soil carbon and nitrogen pools in mine spoil. J Soil Sediment 17(3):1–10.
Zhang, Y.; Hao, X.; Alexander, T.W.; Thomas, B.W.; Shi, X.; Lupwayi, N.Z. Long-term and legacy effects of manure application on soil microbial community composition. Biol. Fert. Soils (2018), 54, 269–283.
Zhao M., Dai Y., Zhang M.Y., Feng C., Qin B.J., Zhang W.H., Zhao N., Li Y.Y., Ni Z.B., Xu Z.H., Tsang D.C.W., Qiu R.L. (2020): Mechanisms of Pb and/or Zn adsorption by different biochars: biochar characteristics, stability, and binding energies. Science of the Total Environment, 717: 136894.
Zhu Y.G., Peng J.J., Wei Z., Shen Q.R., Zhang F.S. (2021): Linking the soil microbiome to soil health. Science China Life Sciences, 51: 1–11.
Zhou Y.X., Wang X.T., Wang G.L., Xu X.P., Wang W.Q. (2020): Effect of the slag and biochar application on bacterial diversity and community composition of paddy field. China Environmental Science, 40: 1213–1223.
Zou Q, An WH, Wu C et al (2017) Red mud‐modified biochar reduces soil arsenic availability and changes bacterial composition. Environm Chem Lett 16:615–622.