簡易檢索 / 詳目顯示

研究生: 趙開誠
Chao, Kai-Chen
論文名稱: 微型針狀結構陣列的製作與捕霧集水器之應用
A study on fabrication of micro-cone arrays and its application to fog collector
指導教授: 鍾震桂
Chung, Chen-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 89
中文關鍵詞: 二氧化碳(CO2)雷射微型針狀結構陣列捕霧集水器表面改質
外文關鍵詞: fog collector, CO2 laser, micro-cone arrays, surface modification
相關次數: 點閱:96下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是希望藉由效仿生物構造,利用簡單、低成本的方法,製作PDMS微型針狀結構陣列來捕捉水霧,有效率的收集可用水資源,以達成解決全球水資源問題之目的。
    在現代氣候劇烈變遷的情況下,環境議題是我們必須警覺的問題,捕霧集水器便是因應而出的研究,而隨著水資源的缺乏,此類研究想必將扮演越來越重要的地位。此結構具有發展潛力,其主要特點為不耗電、設備便宜耐用,如能便宜、快速的製作微型針狀結構陣列並應用於捕霧集水器上,以及有效的提高捕霧集水器的收集效率,則有望解決多霧地區的水資源問題。
    此微針陣列技術有別於使用傳統光微影技術(Photolithography)、電鑄技術(Electroforming)和蝕刻成型技術(Etching-molding)加工,本研究主要利用二氧化碳(CO2)雷射,對PMMA(Polymethylmethacrylate)材料加工出具有錐狀孔洞、可重複利用的模具,再以PDMS(Polydimethylsiloxane)高分子彈性材料進行翻模,製作出微型針狀結構陣列。具有省時及成本上的優勢,對於大量生產有良好幫助。
    在捕霧集水器收集水霧的過程中,不僅針狀結構的『集水』會影響效率,如何有效的『傳輸』累積的液滴至集水區也是一個重要的課題。多數的捕霧集水器選擇以重力作為傳輸液滴的方式,將水分移動至下方的收集區,以維持裝置簡單方便的特性。然而,此時物體表面的親水性便十分重要,表面如具有親水性,雖然擁有易於捕捉空氣中水霧的特性,但表面與水的附著力卻會使的液滴無法有效的受重力引導至集水區。本研究使用濺鍍的方式,在PDMS微型針狀結構陣列上面沉積一層鋁金屬薄膜,能夠有效的降低水的附著力,使累積的液滴能夠輕鬆的流往集水區。
    整體而言,本研究使用了CO2雷射為主的製程,成功製作出具有『集水』效率以及『傳輸』能力的針狀捕霧集水器,在低成本及快速製作的前提下也保證了一定的成品品質,在解決全球水資源缺乏的問題中具有一定的發展性。

    This study is to emulate biological structure, using a simple, low-cost method to fabricate PDMS micro-cone arrays for fog collection. More efficiently, to collect available source of water can be used to achieve the purpose of solving global water issues. The CO2 laser is used to fabricate a high-aspect-ratio micro-cone PMMA master mold, instead of using other conventional time-consuming and expensive photolithography and etching processes. And then the PDMS micro-cone arrays are casted from the PMMA mold that can be cycled to replicate the pattern structures. The pattern on PMMA mold can easily be adjusted by changing CO2 laser power and scanning speed. The optimum PDMS micro-cone structure can be used for efficient fog collector. Also, a layer of aluminum metal film coated on PDMS micro-cone structure surface is applied to enhance the water droplets flow into the catchment area.

    目錄 摘要 I 誌謝 X 目錄 XI 圖目錄 XIII 表目錄 XVIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 第二章 文獻回顧 5 2-1 捕霧集水器文獻回顧 5 2-2 針狀結構集水原理 9 2-2.1 拉普拉斯壓力(Laplace Pressure) 10 2-2.2 微結構的疏水性(Hydrophobicity) 16 2-3 雷射加工微結構技術文獻回顧 19 2-4 雷射加工原理與機制 28 2-5 PDMS表面改質技術文獻回顧 30 第三章 實驗設計與步驟 34 3-1 實驗材料介紹 34 3-2 實驗儀器設備介紹 38 3-3 雷射加工PDMS針狀結構製作方法 43 3-4 濺鍍金屬薄膜處理 48 3-5 捕霧集水能力測試方法 49 第四章 結果與討論 52 4-1 雷射加工針狀結構性質討論 52 4-1.1 雷射加工造成表面粗糙的幫助 52 4-1.2 雷射參數與PDMS針狀結構尺寸之關係 53 4-2 針狀結構陣列集水能力討論 63 4-2.1 結構高度與密度對疏水能力的影響 63 4-2.2 結構高度、密度對集水能力的影響 65 4-2.3 鋁金屬鍍膜對集水能力的影響 70 第五章 結論與未來展望 79 5-1 結論 79 5-2 本文貢獻 82 5-3 未來展望 84 參考文獻 85

    參考文獻
    [1] K. Khare, Zhou J, S. Yang, et al.,"Tunable open-channel microfluidics on soft poly(dimethylsiloxane)(PDMS) substrates with sinusoidal grooves",Langmuir, vol. 25, pp. 12794-9, 2009.
    [2] J. W. Leem , S. Kim , S.H. Lee, J.A. Rogers , E. Kim , J.S. Yu, “Efficiency Enhancement of Organic Solar Cells Using Hydrophobic Antireflective Inverted Moth-Eye Nanopatterned PDMS Films .”, Adv. Energy Mater. , vol. 4, JUN 2014.
    [3] M. Kersaudy-Kerhoas, E. Sollier, "Micro-scale blood plasma separation: from acoustophoresis to egg-beaters," Lab Chip, vol. 13, pp. 3323-46, Sep 7 2013.
    [4] M. R. Prausnitz, S. Mitragotri and R. Langer, “Current status and future potential of transdermal drug delivery”, Nat. Rev. Drug Discovery,vol. 3, 115–24,2004.
    [5] S. Khumpuang, M. Horade, K. Fujioka and S. Sugiyama, “Microneedle fabrication using the plane pattern to cross-section transfer method”, Smart Mater. Struct.,vol. 15, 600–6, 2006.
    [6] J. H. Park, M. G. Allen and M. R. Prausnitz , “Polymermicroneedles for controlled-release drug delivery”, Pharm. Res.,vol. 23, 1008–19, 2006.
    [7] Y. Yoon, D. W. Lee and J. B. Lee, “Surface modified nanopatterned SU-8 pillar array optically transparent superhydrophobic thin film” Micromech. Microeng.,vol. 22, 035012, 2012.
    [8] M. W. Zhu, H. W. Li, X. L. Chen, Y. F. Tang, M. H. Lu and Y. F. Chen, “Silica needle template fabrication of metal hollow microneedle arrays”, Micromech. Microeng.,vol. 19, 115010, 2009.
    [9] C. O’Mahony, F. Pini, A. Blake, C. Webster, J. O’Brien and K. G. McCarthy, “Microneedle-based electrodes with integrated through-silicon via for biopotential recording” Sensors Actuators A, vol. 186, 130–6, 2012.
    [10] K. Kim, D. S. Park, H. M. Lu, W. Che, K. Kim, J. B. Lee and C. H. Ahn, “A tapered hollow metallic microneedle array using backside exposure of SU-8” Micromech. Microeng., vol. 14, 597–603, 2004.
    [11] M. Y. Kim, B. Jung and J. H. Park, “Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin”, Biomaterials, vol. 33, 668–78, 2012.
    [12] A. R. Parker, C. R. Lawrence,” Water capture by a desert beetle”, Nature , vol.414, 33-34 , Nov 2001.
    [13] J. Ju , H. Bai , Y. M. Zheng , T. Y. Zhao , R. C. Fang , L. Jiang, “A multi-structural and multi-functional integrated fog collection system in cactus”, NATURE COMMUNICATIONS, vol. 3, 1247, Dec 2012.
    [14] S. Vogela, U. Müller-Doblies, “Desert geophytes under dew and fog: The “curly-whirlies” of Namaqualand (South Africa)”, FLORA, Vol. 206, 3-31, 2011.
    [15] Y. M. Zheng, H. Bai, Z. B. Huang. Et al, “Directional water collection on wetted spider silk”, NATURE, vol. 463, 640-643, Feb 4 2010.
    [16] B. White, A. Sarkar, A. Kietzig, “Fog-harvesting inspired by the Stenocara beetle—An analysis of drop collection and removal from biomimetic samples with wetting contrast”, Applied Surface Science, vol. 284, 826-836, 2013.
    [17] W. Hu, W. Liu, F. Zhu, X. S. Zhang, H. X. Zhang, “The Fabrication of PDMS-based Functional Surface Mimicking the Namib Desert Beetle Back for Collecting Water Vapor in the Air”, Conference on Nano/Micro Engineered and Molecular Systems, 2014.
    [18] M. Y. Cao, J. Ju, K. Li, S. X. Dou, K. S. Liu, and L. Jiang, “Facile and Large-Scale Fabrication of a Cactus-Inspired Continuous Fog Collector”, Adv. Funct. Mater., vol. 24, 3235-3240, Jun 2014.
    [19] J. Ju, X. Yao, S. Yang, L. Wang, R.Z. Sun, Y.X. He, and L. Jiang’. “Cactus Stem Inspired Cone-Arrayed Surfaces for Efficient Fog Collection.”, Adv. Funct. Mater., 2014.
    [20] FogQuest: Sustainable Water Solutions, http://www.fogquest.org/
    [21] K. Li, J. Ju, Z. Xue, J. Ma, L. Feng, S. Gao, et al., "Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water," Nat Commun, vol. 4, p. 2276, 2013.
    [22] J.Yong, Q.Yang, F.Chen, et al., "Superhydrophobic PDMS surfaces with three-dimensional (3D)pattern-dependent controllable adhesion", Applied Surface Science, vol. 288, pp. 579-583, 2014.
    [23] H. Y. Zheng, Y. C. Lam, C. Sundarraman, and D. V. Tran, "Influence of substrate cooling on femtosecond laser machined hole depth and diameter," Applied Physics a-Materials Science & Processing, vol. 89, pp. 559-563, Nov 2007.
    [24] D. Day and M. Gu, "Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses," Optics Express, vol. 13, pp. 5939-5946, Aug 2005.
    [25] X. Zhao and Y. C. Shin, "Femtosecond laser drilling of high-aspect ratio microchannels in glass," Applied Physics a-Materials Science & Processing, vol. 104, pp. 713-719, Aug 2011.
    [26] Y. Feng, Z. Q. Liu, and X. S. Yi, "Co-occurrence of photochemical and thermal effects during laser polymer ablation via a 248-nm excimer laser," Applied Surface Science, vol. 156, pp. 177-182, Feb 2000.
    [27] J. Jiang, C. L. Callender, J. P. Noad, R. B. Walker, S. J. Mihailov, J. Ding, et al., "All-polymer photonic devices using excimer laser micromachining," IEEE Photonics Technology Letters, vol. 16, pp. 509-511, Feb 2004.
    [28] S. W. Youn, M. Takahashi, H. Goto, and R. Maeda, "Fabrication of micro-mold for glass embossing using focused ion beam, femto-second laser, eximer laser and dicing techniques," Journal of Materials Processing Technology, vol. 187, pp. 326-330, Jun 2007.
    [29] H. Qi, X. S. Wang, T. Chen, X. M. Ma, and T. C. Zuo, "Fabrication and characterization of a polymethyl methacrylate continuous-flow PCR microfluidic chip using CO2 laser ablation," Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 15, pp. 1027-1030, Jul 2009.
    [30] T. F. Hong, W. J. Ju, M. C. Wu, C. H. Tai, C. H. Tsai, and L. M. Fu, "Rapid prototyping of PMMA microfluidic chips utilizing a CO2 laser," Microfluidics and Nanofluidics, vol. 9, pp. 1125-1133, Dec 2010.
    [31] L. Romoli, G. Tantussi, and G. Dini, "Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices," Optics and Lasers in Engineering, vol. 49, pp. 419-427, Mar 2011.
    [32] H. Klank, J. P. Kutter, and O. Geschke, "CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems," Lab on a Chip, vol. 2, pp. 242-246, 2002.
    [33] D. Snakenborg, H. Klank, and J. P. Kutter, "Microstructure fabrication with a CO2 laser system," Journal of Micromechanics and Microengineering, vol. 14, pp. 182-189, Feb 2004.
    [34] J. Y. Cheng, C. W. Wei, K. H. Hsu, and T. H. Young, "Direct-write laser micromachining and universal surface modification of PMMA for device development," Sensors and Actuators B-Chemical, vol. 99, pp. 186-196, Apr 2004.
    [35]C. K. Chung, Y. C. Lin, and G. R. Huang, "Bulge formation and improvement of the polymer in CO2 laser micromachining," Journal of Micromechanics and Microengineering, vol. 15, pp. 1878-1884, Oct 2005.
    [36] Z. K. Wang, H. Y. Zheng, R. Y. H. Lim, Z. F. Wang, and Y. C. Lam, "Improving surface smoothness of laser-fabricated microchannels for microfluidic application," Journal of Micromechanics and Microengineering, vol. 21, Sep 2011.
    [37] L. W. Luo, C. Y. Teo, W. L. Ong, K. C. Tang, L. F. Cheow, and L. Yobas, "Rapid prototyping of microfluidic systems using a laser-patterned tape," Journal of Micromechanics and Microengineering, vol. 17, pp. N107-N111, Dec 2007.
    [38] H. S. Chuang and S. T. Wereley, "Rapid patterning of slurry-like elastomer composites using a laser-cut tape," Journal of Micromechanics and Microengineering, vol. 19, Sep 2009.
    [39] M.H. Jin, X.J. Feng, J.M. Xi, J. Zhai, K.L. Cho, L. Feng, L. Jiang, “Super-Hydrophobic PDMS Surface with Ultra-Low Adhesive Force”, MACROMOLECULAR RAPID COMMUNICATIONS, vol. 26, 1805-1809, NOV 14 2005.
    [40] 丁志明, 方維倫等九十八人, 微機電系統技術與應用, 行政院國家科學委員會精密儀器發展中心出版, 第187-190頁, 民國92年.
    [41] X. Q. Ren, M. Bachman, C. Sims, G. P. Li, and N. Allbritton, "Electroosmotic properties of microfluidic channels composed of poly(dimethylsiloxane)," Journal of Chromatography B, vol. 762, pp. 117-125, Oct 2001.
    [42] S. L. Peterson, A. McDonald, P. L. Gourley, and D. Y. Sasaki, "Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: Cell culture and flow studies with glial cells," Journal of Biomedical Materials Research Part A, vol. 72A, pp. 10-18, Jan 2005.
    [43] H. M. L. Tan, H. Fukuda, T. Akagi, and T. Ichiki, "Surface modification of poly(dimethylsiloxane) for controlling biological cells' adhesion using a scanning radical microjet," Thin Solid Films, vol. 515, pp. 5172-5178, Apr 2007.
    [44] K. Efimenko, W. E. Wallace, and J. Genzer, "Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment," Journal of Colloid and Interface Science, vol. 254, pp. 306-315, Oct 2002.
    [45] Q. Zhang, J. J. Xu, Y. Liu, and H. Y. Chen, "In-situ synthesis of poly(dimethylsiloxane)-gold nanoparticles composite films and its application in microfluidic systems," Lab on a Chip, vol. 8, pp. 352-357, 2008.
    [46] A. J. Wang, J. J. Xu, Q. Zhang, and H. Y. Chen, "The use of poly(dimethylsiloxane) surface modification with gold nanoparticles for the microchip electrophoresis," Talanta, vol. 69, pp. 210-215, Mar 2006.
    [47] G. T. Roman, T. Hlaus, K. J. Bass, T. G. Seelhammer, and C. T. Culbertson, "Sol-gel modified poly(dimethylsiloxane) microfluidic devices with high electroosmotic Mobilities and hydrophilic channel wall characteristics," Analytical Chemistry, vol. 77, pp. 1414-1422, Mar 2005.
    [48] J. W. Zhou, A. V. Ellis, and N. H. Voelcker, "Recent developments in PDMS surface modification for microfluidic devices," Electrophoresis, vol. 31, pp. 2-16, Jan 2010.
    [49] Madadi Hojjat, Casals-Terre Jasmina, “Long-term behavior of nonionic surfactant-added PDMS for self-driven microchips”, MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, vol. 19, 143-150, JAN 2013.
    [50] A.Y. Vorobyev, C.L. Guo, “Multifunctional surfaces produced by femtosecond laser pulses”, JOURNAL OF APPLIED PHYSICS, vol. 117, 033103, JAN 21 2015.
    [51] T.Young,, “An Essay on the Cohesion of Fluids.”, Phil. Trans. R. Soc. Lond.,vol. 95, 65–87, 1805.
    [52] R.N. Wenzel, “Resistance of Solid Surfaces to Wetting by Water.”, Ind. Eng. Chem., vol. 28, 988–994, 1936.
    [53] de Gennes, Pierre-Gilles, “Capillarity and Wetting Phenomena.”, 2004.
    [54] Cassie, ABD. “Wettability of Porous Surfaces.”, Trans. Faraday Soc., vol. 40, 546–551, 1944.
    [55] Butt Hans-Jürgen, Graf Karlheinz, Kappl Michael, Physics and Chemistry of Interfaces: 9. 2006.
    [56] Gennes Pierre-Gilles de; Francoise Brochard-Wyart David Quere. “Capillarity and Wetting Phenomena.”, Springer. 2004: 291.

    下載圖示 校內:2021-12-31公開
    校外:2021-12-31公開
    QR CODE