簡易檢索 / 詳目顯示

研究生: 李建興
Lee, Jian-shine
論文名稱: 在後燃器噴霧燃燒流場下薄膜冷卻之數值模擬分析
Numerical analyses on film cooling under spray combustion flow of an afterburner
指導教授: 江滄柳
Jiang, Tsung Leo
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 55
中文關鍵詞: 後燃器薄膜冷卻
外文關鍵詞: film-cooling, afterburner
相關次數: 點閱:78下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 後燃器之燃燒室流場一般操作於高速、高溫之條件下,以數值模擬方法來分析其流場中的燃燒與熱傳現象,可以輔助實驗上的參數測試次數,以降低其成本,因此本研究將以數值模擬方法探討在噴霧燃燒情形下,流場變化與後燃器隔熱襯筒間的相互關係,結果發現隔熱襯筒上的變化造就不同的薄膜冷卻效果。在本文中採用了不同冷卻流道進口速度,且在隔熱襯筒隙縫上做些變化,而流孔的形式上採用隙縫模式,結果發現在較快的冷卻流道流速與隙縫較寬的情形之下,薄膜冷卻效果較佳。此研究為在包含駐焰器、隔熱襯筒、且在噴霧燃燒下進行模擬,與真實之後燃器之操作條件極為相似,可作為一提供後燃器實驗上探討的輔助工具。

    The afterburner is usually operated under the high-speed and high-temperature conditions. In order to reduce the costly experimental attempts for parameter analyses, a simulation model was proposed to investigate the combustion and heat transfer phenomena in the flow field of the afterburner. In this study, the interaction of flow-field variation and liner under spray combustion was calculated by the simulation model. The results shown that the variation of liner leaded to different cooling effect. In this study, the different inlet velocities of cooling flow were applied. Consequently, the effects of different slot liners were also discussed. The results indicated that the faster cooling flow velocity and wider liner slot leaded to better cooling performance. The model proposed by this study, which takes into account the flame holder, liner those in spray combustion, and operation under the conditions similar to the real afterburner, can be utilized as an auxiliary tool to the experimental investigation.

    中文摘要…………………………………………………………………I Abstract…………………………………………………………………II 致謝………………………………………………………………………III 目錄………………………………………………………………………IV 表目錄……………………………………………………………………VI 圖目錄……………………………………………………………………VII 符號說明…………………………………………………………………IX 第一章 導論……………………………………………………………1 1-1 前言………………………………………………………1 1-2 文獻回顧…………………………………………………1 1-3 研究動機…………………………………………………4 第二章 數學及物理模式………………………………………………6 2-1 後燃器之物理現象………………………………………6 2-2 模型的基本假設…………………………………………6 2-3 統御方程式………………………………………………7 第三章 數值方法及格點系統…………………………………………15 3-1 簡介………………………………………………………15 3-2 計算程序…………………………………………………15 3-3 共軛熱傳計算程序………………………………………17 3-4 格點系統…………………………………………………17 第四章 結果與討論……………………………………………………19 4-1 有無薄膜冷卻的影響……………………………………19 4-2 不同冷卻流道速度對薄膜冷卻效率的影響……………21 4-3 不同隙縫寬度對薄膜冷卻的影響………………………22 4-4 不同隙縫長度對薄膜冷卻的影響………………………25 第五章 結論與未來工作………………………………………………27 參考文獻…………………………………………………………………29

    【1】 C. M. Bell, H. Hamakawa, and P. M. Ligrani, “Film cooling form shaped holes,” Transactions of the ASME, Vol. 122, May 2000.
    【2】 C. A. Hale, M. W. Plesniak, and S. Ramadhyani, “Film cooling effectiveness for short film cooling holes fed by a narrow plenum,” Journal of Turbomachinery, Vol. 122, 2000.
    【3】 I. S. Jung, and J. S. Lee, “Effects of orientation angles on film cooling over a flat plate: Boundary layer temperature distributions and adiabatic film cooling effectiveness,” Journal of Turbomachinery, Vol. 122, 2000.
    【4】 J. Dittmar, A. Schulz, and S. Wittig, “Assessment of various film-cooling configurations including shaped and compound angle holes based on large-scale experiments,” Journal of Turbomachinery, Vol. 125, 2003.
    【5】 Y. Yu, C. H. Shih, T. I. P. Shih, and M. K. Chyu, “Film cooling effectiveness and heat transfer coefficient distributions around diffusion shaped holes,” Transactions of the ASME, Vol. 124, 2002.
    【6】 H. Reiss, and A. Bolcs, “Experimental study of showerhead cooling on a cylinder comparing several configurations using cylindrical and shaped holes,” Journal of Turbomachinery, Vol. 122, 2000.
    【7】 J. E. Sargison, S. M. Guo, G. D. Lock and A. J. Rqwlinson, “A converging slot-hole film-cooling geometry-part 1: Low-speed flat-plate heat transfer and loss,” Journal of Turbomachinery, Vol. 124, 2002.
    【8】 R. S. Bunker, “Film cooling effectiveness due to discrete holes within transverse surface slots,” Energy and Propulsion Technologies, p18, 2002.
    【9】 B. Aupoix, A. Mignosi, S. Viala, F. Bouvier, and R. Gaillard, “Experimental and numerical study of supersonic film cooling,” AIAA, 1996.
    【10】 A Azzi, and M. Abidat, “Film cooling predictions of simple and compound angle injection from one and two staggered rows,” Numerical Heat Transfer, Part A, Vol. 40, PP. 273-294, 2001.
    【11】 孟祥泰與劉高恩, ”多斜孔冷卻技術分析,” Journal of Aerospace Power, Vol. 9, No. 4, 1994.
    【12】 M. A. Macquisten, and A. P. Dowling, “Combustion oscillations in a twin-stream afterburner,” AIAA Paper 93-4392, 1993.
    【13】 D. Bohn, and T. Heuer, “Conjugate flow and heat transfer calculation of a high-pressure turbine nozzle guide vane,” AIAA-2001-3304, p.1-10, 2001.
    【14】 H. Liu “Three-dimension numerical study on the combustion flow in an afterburner,” AIAA-99-3752, 1999.
    【15】 Q. Zeng, Y. Sheng, and Q. Zhou, “Calculation of recirculating flow behind flame-holders,” Acta Aeronautica et Astronautica Sinica, Vol.6, P.495-497, Oct, 1985.
    【16】 R. M. Stwalley, and A. Lefebvre, “Characteristics of dune-shape flamholders,” International Journal of Turbo and Jet Engines, Vol. 6, PP.103-112, 1989.
    【17】 G. Lavergne, P. Hebrard, and P. H. Donnadille, “Experimental and computation study of liquid droplets impinging on an afterburner,” ISABE, P1018-1025, 1991.
    【18】 S. H. Chuang, and J. S. Jiang, “Diffusion flame analysis of an a function of the air-fuel ratio,” International Journal for Numerical Methods in Fluids, Vol.11, 303-316, 1990.
    【19】 M. Ravichandran, and V. Ganesan, “Aerodynamic Flow investigation in an isothermal model of an afterburner,” Experiments in Fluids, 17, p.59-67, 1993.
    【20】 呂裕隆, ”V-型駐焰器燃燒特性之實驗分析,” 國立成功大學航太所碩士論文,1990.
    【21】 王贊貴, “平板駐焰器之燃燒特性,” 國立成功大學航太所碩士論文,1991.
    【22】 D. Lee, and J. S. Lin, “Computation of nonreacting flows of a two-ring flame stabilizer using a zonal grid method,” Numerical Heat Transfer, Part A, Vol. 20, PP.65-79, 1991.
    【23】 M. R. Wang, K. D. Jen, C. J. Kuo, and W. H. Lai, “Flameholding characteristics of twin—plate flameholders,” International Journal of Turbo and Jet Engines, Vol. 11, PP.277-292, 1994.
    【24】 Y. Xiao, and R. S. Amano, “A steady on effective heat transfer characteristics in an afterburner with ceramic stabilizer,” AIAA Paper 2003-0338, 2003.
    【25】 X. Zhang, and H. Chiu, “Numerical modeling of afterburner combustion,” International Journal of Turbo and Jet-Engine 4, 251-262, 1897.
    【26】 Y. W. Yan, and L. W. Ma, J. X. Zhao, “Large-eddy simulation of turbulent flow in an afterburner,” Jourmal of Nanjing University of Aeronautics & Astronautics, Vol.36 No.6,2004.
    【27】 S. V. Unaune, “Flow field studies in an afterburner,” Vol.84, 2004.
    【28】 J. X. Zhao, Q. H. Liu, and H. Liu, “Numerical modeling of reacting recirculating flows in the afterburner with heat shield,” Journal of Combustion Science and Technologyp, 111-119, Vol.1, No. 2, 1995.
    【29】 B. G. Wang, “Numerical analysis of the wall-temperature with film-cooling in the combustion chamber,” ACTA Aeronautica ET Astronautica Sinica, Vol16 No.4, 1995.
    【30】 葉日哲, “後燃器含隔熱罩之高速流場共軛熱傳數值模擬分析,” 國立成功大學航太所碩士論文,2006.
    【31】 A, A, Amsden, “KIVA-3: “A KIVA Program with Block-Structured Mesh for Complex Geometries,“ Los Alamos National Laboratory Report LA-12503-MS, 1993.
    【32】 A. A. Amsden, P. J. O’Rourke and T. D. Butler, “KIVA-2: A Computer Program for Chemically Reactive Flows with Sprays,” Los Alamos National Laboratory Report LA-11560-MS, 1989.
    【33】 W. E. Pracht, “An arbitrary Lagrangian-Eulerian computer method for all flow speed,” J. Computer. Phys., p.132, Vol. 17, 1975.
    【34】 S. V. Patankar, “Numerical heat transfer and fluid flow,” Hemisphere Washington D. C., 1980.

    下載圖示 校內:立即公開
    校外:2007-05-28公開
    QR CODE