簡易檢索 / 詳目顯示

研究生: 李孟駿
Lee, Meng-Chun
論文名稱: 以結合流動之介電泳操控次微米粒子 運動的實驗探討
Flow-Regulated Dielectrophoretic Manipulation of Submicron particles
指導教授: 魏憲鴻
Wei, Hsien-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 121
中文關鍵詞: 城垛型電極粒子分離連續流動介電泳效應
外文關鍵詞: dielectrophoresis, particle separation, continuous flow, interdigitated microelectrode
相關次數: 點閱:96下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是探討次微米粒子於交流介電泳(Dielectrophoresis, DEP)結合流動作用下的運動行為。而實驗所使用的介電泳晶片是由PDMS製成的微流道和城垛型電極兩部分組裝成的。實驗方法是將次微米聚苯乙烯粒子加入到我們所配製的電解質溶液內,藉由電解質溶液及粒子的介電性質來控制介電泳效應。實驗結果顯示出粒子會形成與純DEP完全不同的粒子聚集形態,而粒子聚集形態可根據流量、外加電場頻率及溶液導電度來決定。此外,我們也提出尺度分析來解釋實驗結果。利用DEP配合流動作用可在連續模式下提濃、分離及收集粒子,故對於如何操縱次微米粒子可提供新的範例。

    The motion of submicron particles under the condition of simultaneous flow and ac dielectrophoresis (DEP) is investigated experimentally using a microfluidic approach. Experiments are conducted within a PDMS microchannel integrated with arrays of castellated microelectrodes. Submicron latex particles are suspended in an electrolyte aqueous solution. The response of dielectrophoretic particle motion to the change in dielectric properties is carried out using different electrolyte concentrations. Results show that particle aggregation patterns are different from those of conventional DEP. Various new patterns of particle aggregation are identified, depending on the flow rate, the frequency of an applied electric field and the electrolyte conductivity. A scaling analysis is devised to explain the effects at work in accordance with experimental observations. The study provides new strategies for manipulating submicron particles in a continuous manner.

    摘要 Ⅰ Abstract Ⅱ 誌謝 Ⅲ 目錄 Ⅵ 表目錄 Ⅶ 圖目錄 Ⅷ 符號說明 ⅩⅥ 第一章 前言 1 1.1研究背景 1 1.2介電泳(Dielectrophoresis)基本原理 2 1.3文獻回顧 5 1.4研究動機 7 第二章 實驗部分 16 2.1電極晶片製作 16 2.1.1電極光罩設計 16 2.1.2玻璃基材清洗 17 2.1.3金屬真空蒸鍍 17 2.1.4光微影製程(Photolithigraphy) 18 2.2微流道光微影製程 21 2.2.1微流道光罩設計 21 2.2.2晶片清洗 22 2.2.3塗佈光阻 22 2.2.4軟烤(Soft Baking) 24 2.2.5曝光(Exposure) 24 2.2.6曝後烤(Post Expose Baking) 25 2.2.7顯影(Development) 26 2.2.8硬烤(Hard Baking) 26 2.2.9光阻母模厚度測量 27 2.3微流道製作 27 2.3.1材料 27 2.3.2微流道模型製作 28 2.4介電泳晶片裝置組合 29 2.4.1微流道與電極晶片組合 29 2.4.2管線組裝 30 2.4.3 PDMS表面改質 30 2.5實驗設備與研究方法 31 2.5.1實驗設備 31 2.5.2實驗溶液與粒子的配製 32 2.5.3研究方法 33 第三章 結果與討論 43 3.1次微米粒子在純DEP作用下的聚集行為 43 3.1.A實驗觀察結果 43 3.1.B討論 46 3.2次微米粒子在有DEP和流動同時作用下之聚集行為 48 3.2.A在流量500µl/hr下之實驗結果 48 3.2.A.1粒子於11.04µS/cm溶液之實驗結果 49 3.2.A.2粒子於6.7µS/cm溶液之實驗結果 51 3.2.A.3粒子於1.24µS/cm溶液之實驗結果 53 3.2.A.4粒子於0.4µS/cm溶液之實驗結果 54 3.2.B在流量300µl/hr下之實驗結果 55 3.2.B.1粒子於11.04µS/cm溶液之實驗結果 55 3.2.B.2粒子於0.4µS/cm溶液之實驗結果 56 3.2.C在流量1000µl/hr下之實驗結果 58 3.2.C.1粒子於11.04µS/cm溶液之實驗結果 58 3.2.C.2粒子於0.4µS/cm溶液之實驗結果 59 3.2.D粒子聚集模式 61 3.2.D.1流量固定下導電度及頻率對粒子聚集模式之影響 62 3.2.D.2導電度固定下流量及頻率對粒子聚集模式之影響 62 3.3尺度分析 64 3.4混合粒子系統 66 3.4.A混合粒子系統在純DEP作用下之分離測試 67 3.4.B混合不同類粒子在結合DEP與流動同時作用下之分離測試 68 第四章 結論與建議 109 4.1結論 109 4.2改進建議 110 第五章 未來工作 112 參考文獻 116 附錄A 120 自述 121

    Becker, F. F., Wang, X. B., Huang, Y., Pethig, R., Vykoukal, J., Gascoyne, P. R. C., The Removal of Human Leukaemia Cells from Blood Using Interdigitated Microelectrodes, J. Phys. D: Appl. Phys., 27, 2659-2662, 1994.

    Becker, F. F., Wang, X. B., Separation of Human Breast-Cancer Cells from Blood by Differential Dielectric Affinity, Proc. Nat. Acad. Sci. USA, 92(3), 860-864, 1995.

    Crippen, S. M., Holl, M. R., Meldrum, D. R., Examination of Dielectrophoretic Behavior of DNA as a Function of Frequency from 30 Hz to 1MHz Using a Flexible Microfluidic Test Apparatus, Micro Total Analysis Systems, 529-532, 2000.

    Doh, I., Cho, Y. H., A Continuous Cell Separation Chip Using Hydrodynamic
    Dielectrophoresis (DEP) Process, Sensors and Actuators A, 121, 59-65, 2005.

    Gascoyne, P. R. C., Huang, Y., Pethig, R., Vykoukal, J., Becker, F. F., Dielectrophoretic Separation of Mammalian Cells Studied by Computerized Image Analysis, Meas. Sci. Technol., 3, 439-445, 1992.

    Gascoyne, P. R. C., Noshari, J., Becker, F. F., Pethig, R., Use of Dielectrophoretic Collection Spectra for Characterizing Differences between Normal and Cancerous Cells, IEEE Trans. Industry Applicat., 30(4), 829-834, 1994.

    Gascoyne, P. R. C., Vykoukal, J., Particle Separation by Dielectrophoresis, Electrophoresis, 23, 1973-1983, 2002.

    Gonzalez, C. F., Remcho, V. T., Harnessing Dielectric Forces for Separations of Cells, Fine Particles and Macromolecules, J. Chromatogr. A, 1079, 59-68, 2005.

    Green, N. G.,Morgan, H., Dielectrophoresis of Submicrometer Latex Spheres. 1. Experimental Results, J. Phys. Chem. B, 103, 41-50, 1999.

    Green, N. G., Ramos, A., Morgan, H., Ac Electrokinetics: A Survey of Sub-Micrometre Particle Dynamics, J. Phys. D: Appl. Phys., 33, 632-641, 2000.

    Huang, Y., Pethig, R., Electrode Design for Negative Dielectrophoresis, Meas. Sci. Technol., 2, 1142-1146, 1991.

    Huang, Y., Wang, X. B., Tame, J. A., Pethig, R., Electrokinetic Behaviour of Colloidal Particles in Travelling Electric Fields: Studies Using Yeast Cells, J. Phys. D: Appl. Phys., 26, 1528-1535, 1993.

    Hughes, M. P., Strategies for Dielectrophoretic Separation in Laboratory-On-a-Chip Systems, Electrophoresis, 23, 2569-2582, 2002.

    Li, H., Bashir, R., Dielectrophoretic Separation and Manipulation of Live and Heat-Treated Cells of Listeria on Microfabricated Devices with Interdigitated Electrodes, Sensors and Actuators B, 86, 215-221, 2002.

    Markarian, N., Yeksel, M., Khusid, B., Effects of Clinorotation and Positive Dielectrophoresis on Suspensions of Heavy Particles, Phys. Fluids, 16(5), 1826-1829, 2004.

    Markarian, N., Yeksel, M., Khusid, B., Farmer, K., Limitations on The Scale of an Electrode Array for Trapping Particles in Microfluidics by Positive Dielectrophoresis, Appl. Phys. Lett., 82(26), 4839-4841, 2003.

    Markarian, N., Yeksel, M., Khusid, B., Farmer, K. R., Particle Motions and Segregation in Dielectrophoretic Microfluidics, J. Appl. Phys., 94(6), 4160-4169, 2003.

    Mcdonald, J. C., Whitesides, G. M., Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices, Acc. Chem. Res., 35(7), 491-499, 2002.

    Morgan, H., Green, N. G., Ac Electrokinetic: Colloids and Nanoparticles, Research Studies Press, USA, 2002.

    Morishima, K., Arnold, D. W., Wheeler, A. R., Rakestraw, D. J., Zare, R. N., Novel Separation Method on a Chip Using Capillary Electrophoresis in Combination with Dielectrophoresis, Micro Total Analysis Systems, 269-272, 2000.

    Pethig, R., Huang, Y., Wang, X. B., Burt, J. P. H., Positive and Negative Dielectrophoretic Collection of Colloidal Particles Using Interdigitated Castellated Microelectrodes, J. Phys. D: Appl. Phys., 24, 881-888, 1992.

    Pohl, H., A., Dielectrophoresis, Cambridge University Press, Cambridge 1978.

    Qiu, Z., Markarian, N., Khusid, B., Acrivos, A., Positive Dielectrophoresis and Heterogeneous Aggregation in High-Gradient Ac Electric Fields, J. Appl. Phys., 92(5), 2829-2843, 2002.

    Ramadan, Q., Samper, V., Poenar, D., Liang, Z., Yu, C., Lim, T.M., Simultaneous Cell Lysis and Bead Trapping in a Continuous Flow Microfluidic Device, Sensors and Actuators B, 113, 944-955, 2006.

    Schnelle, T., Muller, T., Gradl, G., Shirley, S. G., Fuhr, G., Dielectrophoretic Manipulation of Suspended Submicron Particles, Electrophoresis, 21, 66-73, 2000.

    Vykoukal, J., Yang, J., Becker, F. F., Gascoyne, P. R. C., Krulevitch, P., Ackler, H., Hamilton, J., A Combined Dielectrophoretic and Field-Flow Fractionation Microsystem for Biomedical Separation and Analysis, Micro Total Analysis Systems, 127-130, 2000.

    Wakizaka, Y., Hakoda, M., Shiragami, N., Effect of Electrode Geometry on Dielectrophoretic Separation of Cells, Biochemical Engineering Journal, 20, 13-19, 2004.

    Wang, X., Huang, Y., Gascoyne, P. R. C., Becker, F. F., Dielectrophoretic Manipulation of Particles, IEEE Trans. Industry Applicat., 33(3), 660-669, 1997.

    Washizu, M., Suzuki, S., Kurosawa, O., Nishizaka, T., Shinohara, T., Molecular Dielectrophoresis of Biopolymers, IEEE Trans. Industry Applicat., 30(4), 835-842, 1994.

    葉宗儒,具圓形凹槽結構的微流道系統之流動特性探討及其在微混合器之應用,碩士論文,國立成功大學,2005。

    下載圖示 校內:2008-06-15公開
    校外:2008-06-15公開
    QR CODE