| 研究生: |
馮祺皓 Fong, Chi-Hao |
|---|---|
| 論文名稱: |
極紫外光干涉式微影術–穿透式光柵製作及曝光平台建置 Extreme ultraviolet interferometric lithography -transmission grating fabrication and exposure platform construction |
| 指導教授: |
林俊宏
Lin, Chun-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 極紫外光 、干涉式微影 、洛埃鏡 、繞射光柵 |
| 外文關鍵詞: | EUV, interferometric lithography, Lloyd’s mirror, diffraction grating |
| 相關次數: | 點閱:96 下載:22 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文在於研究極紫外光(Extreme Ultraviolet, EUV)干涉式微影技術,主要內容包括干涉理論、極紫外光干涉成像性質分析、極紫外光干涉式曝光機台建置、曝光實驗與曝光結果討論。極紫外光波長13.5 nm,其短波長的特性可將曝光關鍵尺寸(Critical Dimension, CD)之理論值縮減至僅3.5 nm(1/4光源波長),有利於小線寬圖案之曝光。而干涉式微影技術能夠在簡單的光學系統下達成大範圍周期性圖案的曝光,並且具有幾乎沒有限制的景深等優點。結合極紫外光以及干涉式微影技術,即可在避免使用複雜的光學系統下達成一維以及二維奈米尺度週期性圖案的製作。
本研究中我們主要使用兩種干涉架構,第一種架構僅使用一道光束入射鏡面與試片垂直交界處,利用鏡面反射部分的入射光與未經反射的入射光進行干涉,通常稱為洛埃鏡(Lloyd’s Mirror)干涉。第二個干涉架構使用一個穿透式繞射光柵,收集極紫外光透射光柵分光後之正負一階光在適當距離形成干涉。另外,本研究由干涉理論著手並分析影響干涉影像品質的因素,同時亦使用嚴格耦合波分析法(Rigorous Coupled Wave Analysis, RCWA)模擬繞射光柵之繞射效率以及曝光區域光場強度分布。實驗上我們在新竹國家同步輻射研究中心(National Synchrotron Radiation Research Center, NSRRC)聚頻磁鐵(Undulator Magnet)光束線建置一個干涉式曝光平台,目前可曝出75 nm半間距密集線以及280 nm間距二維點陣列圖案。
EUV (Extreme Ultraviolet) interferometric lithography was investigated in this thesis, including the interferometric theory, imaging properties of the EUV interference, EUV interferometric lithography platform construction, and exposure results discussion. EUV wavelength is 13.5 nm. The characteristics of its short wavelength can reduce the exposed critical dimension (CD) to the value of about 3.5 nm theoretically (quarter of the wavelength). Therefore, it is suitable for small feature fabrication. Interferometric lithography (IL) provides a way to expose periodic pattern in a large exposure area with unlimited depth of focus. The combination of EUV and interferometric lithography, called extreme ultraviolet interferometric lithography (EUVIL), can produces one or two dimensional nano-scale periodic patterns without using complex optical system.
In this study, two interferometric configurations were investigated. The first one is the Lloyd’s mirror interferometer. In this configuration, the EUV beam was centered at the boundary of the mirror and the sample. Therefore, the half beam reflected from the mirror interfered with another half part to form the interference fringes. In the second configuration, a transmitting diffraction grating was used as a beam splitter. The positive and negative first order EUV beams were collected to interfere at an appropriate distance. We described the interference principle and analyzed the factors that affect the interferometric image quality. We also used the rigorous coupled wave analysis (RCWA) to calculate the diffraction efficiencies of our diffraction gratings and simulated the intensity distribution on the exposure area. In experiments, we constructed an exposure platform at an undulator beam-line of national synchrotron radiation research center (NSRRC). Currently, we can expose 75 nm half-pitch dense line and 280 nm pitch grid patterns by using this platform.
1. G. E. Moore, "Cramming more components onto integrated circuits (Reprinted from Electronics, pg 114-117, April 19, 1965)," Proceedings of the Ieee 86, 82-85 (1998).
2. G. E. Moore, "Progress in digital integrated electronics," Electron Devices Meeting 21, 11-13 (1975).
3. "Moore's Law, "http://www.intel.com/technology/mooreslaw/index.htm.
4. "INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS 2009 EDITION LITHOGRAPHY," http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_Litho.pdf.
5. V. Bakshi, "EUV Source For Lithography" (SPIE Press 2008).
6. B. J. Lin, "Sober view on extreme ultraviolet lithography," Journal of Microlithography Microfabrication and Microsystems 5, 033005 (2006).
7. Benjamin Lin, David Brandt, and Nigel Farrar, "EUV source system development for 22nm generation and beyond," ECS Transactions 18, 391-396 (2009).
8. C. H. Zhang, S. Katsuki, H. Horta, H. Imamura, and H. Akiyama, "High-Power EUV Source for Lithography Using Tin Target " 2008 IEEE Industry Applications Society Annual Meeting (2002).
9. "教科資源/同步加速器光源簡介," http://www.nsrrc.org.tw/chinese/lightsource.aspx.
10. D. A. R. Tichenor, William C.; Lee, Sang H.; Ballard, William P.; Leung, A.H.; Kubiak, Glenn D.; Klebanoff, Leonard E.; Graham, Samuel; Goldsmith, John E.M.; Jefferson, Karen L.; Wronosky, John B.; Smith, Tony G.; Johnson, Terry A.; Shields, Harry; Hale, Layton C.; Chapman, Henry N.; Taylor, John S.; Sweeney, Donald W.; Folta, James A.; Sommargren, Gary E.; Goldberg, Kenneth A.; Naulleau, Patrick; Attwood, David T.; Gullikson, Eric M. , "Performance upgrades in the EUV engineering test stand," Proceedings of SPIE 4688, 72-86 (2002).
11. H. H. Solak, D. He, W. Li, and F. Cerrina, "Nanolithography using extreme ultraviolet lithography interferometry: 19 nm lines and spaces," Journal of Vacuum Science & Technology B 17, 3052-3057 (1999).
12. H. H. Solak, D. He, W. Li, S. Singh-Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey, "Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography," Applied Physics Letters 75, 2328-2330 (1999).
13. M. Wei, D. T. Attwood, T. K. Gustafson, and E. H. Anderson, "PATTERNING A 50-NM PERIOD GRATING USING SOFT-X-RAY SPATIAL-FREQUENCY MULTIPLICATION," Journal of Vacuum Science & Technology B 12, 3648-3652 (1994).
14. H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, "Four-wave EUV interference lithography," Microelectronic Engineering 61-2, 77-82 (2002).
15. H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, "Multiple-beam interference lithography with electron beam written gratings," Journal of Vacuum Science & Technology B 20, 2844-2848 (2002).
16. H. H. Solak, Y. Ekinci, P. Kaser, and S. Park, "Photon-beam lithography reaches 12.5 nm half-pitch resolution," Journal of Vacuum Science & Technology B 25, 91-95 (2007).
17. H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, "Sub-50 nm period patterns with EUV interference lithography," Microelectronic Engineering 67-8, 56-62 (2003).
18. Z. X. Ma. Jie, Zhu. Weizhong, Xie. Changqing, Ye. Tianchun, Shi. Peixiong,, "Fabrication of transmission gratings for extreme ultraviolet interference lithography," Proceeding of SPIE 7133, 713336(2009).
19. Chun-Hung Lin, Wen-Chi Chao, Chung-I Hsieh, Wen-Huei Chang, "Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis," Microelectronic Engineering 83, 1798-1804 (2006).
20. W. A. Isoyan. Artak, Wallace. John., Jiang. Fan., Cerrina. Franco., "4X reduction extreme ultraviolet interferometric lithography," Optics Express 16, 9106-9111 (2008).
21. "BL21B U9-CGM Spectroscopy Beamline," http://140.110.203.42/manage/fck_fileimage/file/bldoc/21BU9CGM.htm.
22. D. Attwood, SOFT X_RAYS AND EXTREME ULTRAVIOLET RADIATION Principles and Applications (Cambridge University Press 1999).
23. E. Hecht, OPTICS (Pearson Education, Inc 2002).
24. H. Seidel., "Anisotropic Etching of Crystalline Silicon in Alkaline Solutions," Electrochem. Soc. 137, 3612-3632 (1990).
25. Y. Ekinci, H. H. Solak, C. Padeste, J. Gobrecht, M. P. Stoykovich, and P. F. Nealey, "20 nm Line/space patterns in HSQ fabricated by EUV interference lithography," Microelectronic Engineering 84, 700-704 (2007).
26. H. H. Solak and Y. Ekinci, "Bit-array patterns with density over 1 Tbit/in2. fabricated by extreme ultraviolet interference lithography," Journal of Vacuum Science & Technology B 25, 2123-2126 (2007).