簡易檢索 / 詳目顯示

研究生: 王駿穎
Wang, Jun-Yen
論文名稱: 利用應變技術改善互補式金氧半影像感測元件的低頻雜訊特性之研究
Investigation of the Low Frequency Noise Characteristic Improvement on CMOS Image Sensor by Using Strain Technology
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系碩士在職專班
Department of Electrical Engineering (on the job class)
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 78
中文關鍵詞: 影像感測器低頻雜訊應力
外文關鍵詞: CMOS Image sensor, CIS, Noise, strain
相關次數: 點閱:137下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要是探討如何改善在消費性電子產品市場中逐漸取代電荷耦合元件(Charge Coupled Device,CCD)而成為主流的互補式金氧半影像感測元件(CMOS image sensor, CIS)其影像品質。我們研究出利用很少應用在互補式金氧半影像感測元件上的應變技術來改善其低頻雜訊特性以提升影像畫質,成功的利用具有高伸張應力的氮化矽薄膜做為鈍化層,來減低互補式金氧半影像感測元件的讀取雜訊(Read Noise,RN)約18.5% 及隨機電報式訊號(Random Telegraph Signal,RTS)約13.3%。並更進一步的解釋了應變技術改善互補式金氧半影像感測元件的原理機制。
     在先進的半導體製程當中廣泛的利用應變技術來減少載子散射現象藉此提升元件的遷移率來達到提升元件的效能,而互補式金氧半影像感測元件的讀取雜訊(Read Noise,RN)及隨機電報式訊號(Random Telegraph Signal,RTS)的產生原因與載子散射現象息息相關,於是我們使用背照光式的互補式金氧半影像感測元件技術在其背面製程當中用高伸張應力的鈍化層,藉由伸張應力來同時改善載子散射及介面陷阱密度,有效的改善了互補式金氧半影像感測元件技術的雜訊現象。

    This thesis is study to improve image quality on CIS (CMOS image sensor) , that gradually replace the CCD(Charge Coupled Device) to become mainstream in the consumer electronics market. We developed to using strain techniques improve the characteristics of the low-frequency noise for enhance image quality, which is rarely used in CIS (CMOS image sensor). Then successful using high tensile stress silicon nitride film as a passivation layer to improve the RN (Read Noise) 18.5% and RTS (Random Telegraph Signal) 13.3% on the CIS (CMOS image sensor). Moreover, further explanation the principle mechanism of strain technology to improve CIS (CMOS image sensor).
    The strain technology has widely application in state-of-the-art semiconductor industry due to that can reduce carrier scattering phenomenon to enhance the carrier mobility for achieve better device performance. However, the RN (Read Noise) and RTS (Random Telegraph Signal) on CIS (CMOS image sensor) causes carrier scattering phenomena with strong correlation. So we utilize the passivation layer with high tensile stress for the back side illuminated CIS (CMOS image sensor) technology in the back side process. Using the tensile stress can reduce the carrier scattering phenomena and interface trap density to improve the noise characteristics effectively on CIS (CMOS image sensor).

    CONTENTS Chinese Abstract i English Abstract ii Acknowledgment iii Contents iv Table Captions vi Figure Captions vii Chapter 1 Introduction 1.1 The history of Image Sensor 1 1.2 Principles of image sensors 2 1.3 Application of image sensor 3 1.3.1 Available applications 4 1.3.2 Special purpose applications 4 Chapter 2 Characteristics of CMOS Image Sensor (CIS) 2.1 The important issues of the CMOS Image Sensor (CIS) 11 2.1.1 The pixel amplifier's deviation 12 2.1.2 The dark current of the photodiode 12 2.1.3 The various pixel structure 13 2.2 The Comparison of the characteristics of the CCD (Charge Coupled Device) and CIS (CMOS Image Sensor) 15 2.2.1 The difference of the structure and principle of operation 15 2.2.2 The Process and system-on-chip 17 2.2.3 Features and power 17 Chapter 3 The Low-Frequency Noise characteristic of CMOS image sensor (CIS) 3.1 Introduction 34 3.1.1 Necessity of Low-Frequency Noise 34 3.1.2 Organization of Noise 35 3.1.3 Mechanism of flick noise (1/f noise) 36 3.1.4 Mechanism of Random Telegraph Signal (RTS) noise 37 3.2 The measurement of Low-Frequency Noise on CMOS image sensor(CIS) 38 3.3 The noise characteristic of CMOS image sensor (CIS) 39 3.4 The read noise (RN) and random telegraph signal (RTS) 41 noise improve of noise characteristic on CMOS image sensor (CIS) 3.4.1 Principle of Strain effects 42 3.4.2 The improve of read noise (RN) and random telegraph signal (RTS) noise by high strain film 44 Chapter 4 Summary and Future works 4.1 Summary 69 4.2 Future work 71 Reference 73

    Chapter 1
    [1.1] M.A. Schuster and G. Strull , ” A Monolithic Mosaic of Photon Sensors for Solid-State Imaging Application”, IEEE Trans. Electron Devices, Vol.ED-13, No.12, 1966.
    [1.2] P.K. Wiener, et al, “A Self-Scanned Solid-State Image Sensor”, Proc. IEEE, Vol. 55 , No.9 , 1967.
    [1.3] W. S. Boyle and G. E. Smith , “Charge Coupled Semiconductor Devices” , Bell Syst. Tech. J., p.p 587-593, Apr. 1970.
    [1.4] S. Manabe, et al , “A 2-Million-Pixel CCD Image Sensor Overlaid with Amorphous Silicon Photoconversion Layer” , IEEE Trans. Elec. Dev. , Vol.38 pp.1765-1771, 1991.
    [1.5] P. B. Denyer, et al ,”CMOS Image Sensor for Multimedia Application” , in Proc. of IEEE Custom Integrated Circuits Conference, pp. 11.5.1-11.5.4. , 1993.
    [1.6] M. F. Tompsett, et al. “Charge Coupled Semiconductor Device: Experimental Results” IEEE Trans. Electron Device, Vol. ED-18, No.11, pp.992-996, 1971.
    [1.7] M. A. Schulster and G. Strull ; “A Monolithic Mosaic of Photon SenSors for Solid-State Imaging Appliction”, IEEE Trans. Elec. Dev. , Vol. ED-13, No.12, pp.907-912, 1966.
    [1.8] J.Nishizawa, et al ,”Static Induction Transistor Image Sensors”, IEEE Trans. Elec. Dev. , Vol. ED-26, No.12, pp.1970-1977, 1979.

    Chapter 2
    [2.1] 中村 力, “ CMDイメージセンサ, 次世代画像入力技術部会, 第30回定例部會資料, pp.262-277, 1992.
    [2.2] K. Yonemoto, et al. “ A CMOS Image Sensor with a Simple FPN-Reduction Technology and a Hole Accumulated Diode”, in ISSC Dig. Tech. Paper, pp.102-103 , 2000.
    [2.3] K. Yonemoto, et al, “ A CMOS Image Sensor with a Sample Fixed-Pattern-Noise-Reduction Technology and a Hole Accumulated Diode” , IEEE J. Solid-State Circuits, Vol.35, No.12, pp.2038-2043, 2000.
    [2.4] M. Furumiya, et al. “ High-Sensitivity and No-Crasstalk Pixel Technology for Embeded CMOS Image Sensor” IEEE Trans. Elec. Dev. , Vol.48, No.10, 2001.
    [2.5] R.H. Nixon, et al. “128*128 CMOS Photodiode-Type Active Pixel Sensors with On-Chip Timing, Control and Signal Chain Electronic” in Proc. SPIE , pp.117-123, 1995.
    [2.6] J. Hynecek , “Analysis of the Photosite Reset in FGA Image Sensors”, IEEE Trans. Elec. Dev. , Vol.37 , No.10, pp.2193-2200,1990.
    [2.7] H. Kawashima, et al. “A 1/4 Inch Format 250K Pixel Ampilfied MOS image Sensor Using CMOS Process”, in Proc. IEDM Tech. Dig. Pp.583-578, 1993.
    [2.8] P. P.K. Lee, et al.”An Active Pixel Sensor Fabricated Using CMOS/CCD Process Technology”, in Proc. IEEE Workshop on CCDs and Advanced Image Sensors, 1995.
    [2.9] R. M. Guidash, et al. “A 0.6um CMOS Pinned Photodiode Color Imager Technology” in Proc. IEDM Tech. Dig. Pp.927-929, 1997.
    [2.10] T. Miida, et al. “A 1.5M Pixel Image with Localized Hole-Modulation Method”, in ISSCC Dig. Tech. Papers, pp.42-43 , 2002.
    [2.11] T. Nakamura, et al. ”A New MOS image Sensor Operation in a Non-Destructive Readout Mode”, in Proc. IEDM Tech. Dig. Pp.353-356, 1986.

    Chapter 3
    [3.1] Y. Nemirovsky, et al. “1/f Noise in CMOS Transistors for Analog Applications.” , IEEE Trans. Elec. Dev, Vol. 48, NO. 5, 2001.
    [3.2] Y. P. Wang, et al. “Application of Substrate-Strained Silicon Technology for High-Mobility MOSFETs”, Dissertation of NCKU, 2006.
    [3.3] F. N. Hooge, et al. “l/f Noise Sources.”, IEEE Trans. Elec. Dev, Vol. 41, NO. 11, 1994.
    [3.4] G. Reimbold, et al. “Modified 1/ f Trapping Noise Theory and Experiments in MOS Transistors Biased from Weak to Strong lnversiorl-Influence of Interface States.” IEEE Trans. Elec. Dev, Vol. ED-31, NO. 9, 1984.
    [3.5] K. K. Hung, et al. “A Unified Model for the Flicker Noise in Metal-Oxide-Semiconductor Field-Effect Transistors”, IEEE Trans. Elec. Dev, Vol. 37. NO. 3, 1990.
    [3.6] C. M. Chang, et al. “The observation of trapping and detrapping effects in high-k gate dielectric MOSFETs by a new gate current random telegraph noise approach,” in IEDM Tech. Dig., pp. 787-790 , 2008.
    [3.7] L. Zhang, et al. “New insights into oxide traps characterization in gate-all-around nanowire transistors with Ti metal gates based on combined Ig − Id RTS technique,” in Proc. VLSI Technol. Syst., pp. 46-47, 2009.
    [3.8] S. Lee, et al. “Characterization of oxide traps leading to RTN in high-k and metal gate MOSFETs,” in IEDM Tech. Dig., pp. 763-766 , 2009.
    [3.9] M.H. Tsai, et al. “The Impact of Device Scaling on the Current Fluctuations in MOSFET’s,” IEEE Trans. Electron Devices, vol. 41, no.11, pp. 2061-2068, 1994.
    [3.10] K. S. Ralls, et al. “Discrete Resistance Switching in Submicrometer Silicon Inversion Layers: Individual Interface Traps and Low-Frequency (1/f) Noise,” Phys. Rev. Lett. , vol. 52, no. 3, pp. 228-231, 1984.
    [3.11] J.H. Lee, et al. “1/f Noise Characteristics of Sub-100 nm MOS Transistors,” J. Semiconductor Technology and Science, vol. 6, no. 1, pp. 38-42, 2006.
    [3.12] M. J. Kirton, et al. “Noise in solid-state microstructures: A new perspective on individual defects, interface states and low-frequency (1/f) noise,” Adv. Phys., vol. 38, no. 4, p. 367, 1989.
    [3.13] C. W. Kuo, et al. ” Impact of stress-memorization technique induced-tensile strain on low frequency noise in n-channel metal-oxide-semiconductor transistors”, Appl. Phys. Lett. Vol. 97, 2010.
    [3.14] C. Leyris, et al. “N-MOSFET oxide trap characterization induced by nitridation process using RTS noise analysis,” Microelectron. Reliab, vol. 47, no. 1, pp. 41-45, 2007.
    [3.15] S. I. Takagi, et al. “Comparative study of phonon-limited mobility of two-dimensional electrons in strained and unstrained Si metal-oxide-semiconductor field-effect transistors,” Jpn. J. Appl. Phys., Vol. 80, pp.1567-1577, 1996.
    [3.16] Y. Sun, et al. “Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors,” J. Appl. Phys., Vol. 101, pp. 104503-1-22, 2007.
    [3.17] N. Mohta, et al. “Mobility Enhancement,” IEEE Circuits and Devices Magazine, Vol. 21, pp. 18-23, 2005.
    [3.18] K. Uchida, et al. “Physical mechanisms of electron mobility enhancement in uniaxial stressed MOSFETs and impact of uniaxial stress engineering in ballistic regime,” in IEDM Tech. Dig. , pp. 129-132, 2005.
    [3.19] H. Irie, et al. “In-plane mobility anisotropy and universality under uni-axial strains in n- and p-MOS inversion layers on (100), (110), and (111) Si,” in IEDM Tech. Dig., pp. 225-228, 2004.
    [3.20] S. I. Takagi, et al. “Subband structure engineering for performance enhancement of Si MOSFETs,” in IEDM Tech. Dig., pp. 219-222, 1997.
    [3.21] S. E. Thompson, et al. “Key differences for process-induced uniaxial vs. substrate-induced biaxial stressed Si and Ge channel MOSFETs,” in IEDM Tech. Dig., pp. 221-224, 2004.
    [3.22] X. Yang, et al. “Gate direct tunneling currents in uniaxial stressed MOSFETs,” in Proc. of Int. EDST, pp. 149-152, 2007.
    [3.23] Y. Zhao, et al. “Evidence of correlation between surface roughness and interface states generation in unstrained and strained-Si MOSFETs” symposium on VLSI Technology Digest of Technical , 2010.
    [3.24] H. Matsumoto, et al. “A Novel Characterization Scheme of Si/SiO2 Interface Roughness for Surface Roughness Scattering-Limited Mobilities of Electrons and Holes in Unstrained- and Strained-Si MOSFETs.” , IEEE Transactions on Electron Devices, Vol.57, No.9, 2010.
    [3.25] X. Wang, et al. “Random Telegraph Signal in CMOS Image Sensor Pixels”, International Electron Devices Meeting IEDM , 2006.

    無法下載圖示 校內:2016-08-06公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE