簡易檢索 / 詳目顯示

研究生: 羅佩嵐
Luo, Pei-lan
論文名稱: 奈米金顆粒於電漿活化矽基板對氮化鎵奈米線成長之研究
Synthesis of GaN Nanowires Using Gold Nanoparticles on Plasma-Activated Silicon Substrate
指導教授: 陳引幹
Chen, Ingann
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 98
中文關鍵詞: 奈米金顆粒氮化鎵奈米線
外文關鍵詞: GaN nanowires, gold nanoparticles
相關次數: 點閱:69下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用奈米金當催化劑,用化學氣相沈積法(CVD)的方式,透過氣相-液相-固相成長機制(VLS growth mechanism)在矽基板上成功地成長出小線徑的氮化鎵奈米線。
    本研究,首先以電漿系統活化矽基板表面後,再將矽基板浸泡於以烯基硫醇(CH2=CH(CH2)nSH)為保護劑的奈米金溶液中,達到奈米金鍵結於矽基板上的目的。由X-射線光電子光譜(XPS)分析結果可知,電漿處理確實可達成矽基板與奈米金形成共價鍵結(Si-C鍵)。
    在掃描式電子顯微鏡(SEM)的觀察結果顯示,奈米金粒徑與氮化鎵奈米線線徑的尺寸相近。這現象表示,在VLS成長機制中,催化劑的粒徑確實能侷限奈米線成長的線徑。此外,奈米金粒徑愈小,奈米線愈長(粒徑小至約25nm時,長度可達1um以上),即催化能力愈佳。
    在室溫光激發螢光光譜(PL)實驗結果顯示,隨奈米線線徑縮小(125nm→31nm),PL峰值位置有藍位移的現象(364nm→ 357nm)。而能隙偏移量與線徑倒數成線性關係變化,此原因與奈米線的表面再結合效應有關。在低溫(80K)PL量測中,亦發現隨線徑縮小,藍移的現象(357nm→353nm)。而當PL量測溫度從300K降低到80K時,峰值位置有藍移現象,意即溫度降低時,氮化鎵能隙會變大,符合Varshini equation的描述。此外,能隙偏移量會隨奈米線線徑縮小而減少。
    當奈米線線徑縮小至31nm時,PL光譜中有一次要峰值產生,落在380~390nm。產生此訊號的來源,可能原因為:(1)烏采結構(Wurtzite)奈米線內含少量的立方體(cubic)結構氮化鎵生成(2)氮化鎵施體-授體對(donor-acceptor pair,簡稱為DAP)訊號。(3)烏采結構(Wurtzite)奈米線內含有少量的氧化鎵。

    In this present research work, the diameter distribution of narrow gallium nitride nanowires (GaN NWs) were grown through vapor- liquid-solid (VLS) growth mechanism by using gold nanoparticles (Au NPs) as a catalyst on plasma- treated silicon(Si) substrate.
    The Si substrates were activated by plasma processing and followed by immersing in alkene-1-thiol-protected Au NPs solutions. The X-ray photoelectron spectroscopy(XPS) analysis results showed that plasma treatment was useful to activate Si surface to form Si-C bond.
    The observations of scanning electron microscope (SEM) revealed that the size of NPs and the diameter of NWs were identical and demonstrated the confinement effect of VLS growth mechanism as well. It was shown that the smaller size of NPs would be corresponded to the better catalysis ability.
    For different sizes of NWs, the photoluminescence (PL) measurements gave the blue shift of the emission peaks in 300K and 80K, respectively. In 300K, the shift of bandgap energy was inversely proportional to the diameter of NWs, which was attributed to the surface recombination effect of NWs. In addition, the change of emission peaks in 300K and 80K can be depicted through Varshini’s equation.
    When the diameter was 31nm, the PL spectra showed an abnormal signal between 380-390nm which would be caused due to the generation of GaN cubic structure, the donor-acceptor-pair(DAP) emission and the generation of Ga2O3 structure.

    摘要............................................................................................................. I ABSTRACT...............................................................................................II 目錄...........................................................................................................III 表目錄...................................................................................................... VI 圖目錄..................................................................................................... VII 第一章 緒論.............................................................................................1 1-1 前言..............................................................................................1 1-2 奈米材料的基本物理效應..........................................................3 1-3 實驗動機與目的..........................................................................6 第二章 理論基礎文獻回顧......................................................................8 2-1 氮化鎵材料概述........................................................................8 2-2 奈米線成長原理........................................................................9 2-2-1 VLS 法.............................................................................9 2-3 奈米金粒子概述........................................................................11 2-3-1 奈米金粒子發展現況......................................................11 2-3-2 奈米金粒子催化劑應用..................................................12 2-3-3 披覆奈米金於基板上方法..............................................12 2-4 電漿原理....................................................................................13 2-4-1 電漿定義..........................................................................13 2-4-2 電漿的種類......................................................................14 2-4-3 冷電漿表面處理技術......................................................15 第三章 實驗流程與分析儀器..............................................................28 3-1 實驗流程....................................................................................28 3-1-1 實驗材料...........................................................................29 3-1-2 基板前處理......................................................................30 3-1-3 將奈米金披覆於基板表面之實驗步驟...........................30 3-1-4 化學氣相沈積實驗步驟..................................................31 3-2 實驗分析儀器.............................................................................32 3-2-1 掃描式電子顯微鏡..........................................................32 3-2-2 核磁共振光譜儀............................................................32 3-2-3 X-射線光電子光譜........................................................33 3-2-4 低掠角X 光薄膜繞射儀.................................................33 3-2-5 光致發光光譜儀..............................................................34 第四章 實驗結果與討論......................................................................42 4.1 在矽基板上披覆奈米金............................................................42 4.1.1 NMR 與XPS 分析..........................................................42 4.1.2 最佳電漿參數—功率與時間.........................................43 4.1.3 改變矽基板浸泡於奈米金時間....................................46 4.2 催化劑奈米金與氮化鎵奈米線尺寸關係................................58 4.2.1 奈米線線徑分析.............................................................58 4.3 氮化鎵奈米線性質分析............................................................72 4.3.1 奈米線元素與晶體結構分析.......................................72 4.3.2 PL 分析.........................................................................72 第五章 結論...........................................................................................85 參考文獻...................................................................................................88

    [1] S. Nakamura, M. Senoh, N. Iwasa, and S.-i. Nagahama, "High-Power InGaN Single- Quantum-Well-Structure Blue and Violet Light-Emitting Diodes", Appl. Phys. Lett., 67, 1868 (1995).
    [2] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, "Room-Temperature Continuous-Wave Operation of InGaN Multi-Quantum-Well- Structure Laser Diodes with a Long Lifetime", Appl. Phys. Lett., 70, 868 (1997).
    [3] J. W. Orton and C. T. Foxon, "The Electron Mobility and Compensation in N-type GaN", Semicond. Sci. Technol., 13, 310 (1998).
    [4] 史光國, "GaN 藍色發光及雷射二極體之發展現況", 工業材料, 126.
    [5] G. S. Cheng, L. D. Zhang, Y. Zhu, G. T. Fei, L. Li, C. M. Mo, and Y. Q. Mao, "Large-Scale Synthesis of Single Crystalline Gallium Nitride Nanowires ", Appl. Phys. Lett., 75, 2455 (1999).
    [6] J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi, and P. Yang, "Single-Crystal Gallium Nitride Nanotubes", Nature, 422, 599 (2003).
    [7] T. Kuykendall, P. J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, and P. Yang, "Crystallographic Alignment of High-Density Gallium Nitride Nanowire Arrays", Nature, 3, 524-528 (2004).
    [8] W. P. Halperin, "Quantum Size Effects in Metal Particles", Rev. Mod. Phys., 58, 533 (1986).
    [9] Ball P and G. Laura, "Science at the Atomic Scale", Nature, 355, 761 (1992).
    [10] S. G. Mark, J. Wang, and C. M. Lieber, "Sythetic Control of the Diameter and Length of Single Crystal Semiconductor Nanowires", J. Phys. Chem. B, 105, 4062-4064 (2001).
    [11] S. Mark and C. M. Lieber, "Diameter-Selective Synthesis of Semiconductor Nanowires", J. Am. Chem. Soc., 122, 8801-8802 (2000).
    [12] T. E. Bogart, S. Dey, K. K. Lew, S. E. Mohney, and J. M. Redwing, "Diameter-Controlled Synthesis of Silicon Nanowires Using Nanoporous Alumina Membranes", Adv. Mater., 17, 114-117 (2005).
    [13] S. Han, W. Jin, T. Tang, C. Li, D. Zhang, and X. Liu, "Controlled Growth of Gallium Nitride Single-Crystal Nanowires Using a Chemical Vapor Deposition Method", J. Mater. Res., 18, 245-249 (2003).
    [14] Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, and C. M. Lieber, "Diameter-Controlled Synthesis of Single-Crystal Silicon Nanowires", Appl. Phys. Lett. 78, 2214-2216 (2001).
    [15] C. K. Kuo, C. W. Hsu, C. T. Wu, Z. H. Lan, C. Y. Mou, C. C. Chen, Y. J. Yang, L. C. Chen, and K. H. Chen, "Self-Regulating and Diameter-Selective Growth of GaN Nanowires", Nanotechnology, 17, S332-S337 (2006).
    [16] J. B. Hannon, S. Kodambaka, F. M. Ross, and R. M. Tromp, "The Influence of the Surface Migration of Gold on the Growth of Silicon nanowires", Nature, 440, p69-71 (2006).
    [17] D. I. Florescu, V. M. Asnin, Fred H. Pollak, A. M. Jones, J. C. Ramer, M. J. Schurman, and I. Ferguson, "Thermal Conductivity of Fully and Partially Coalesced Lateral Epitaxial Overgrown GaN/Sapphire (0001) by Scanning Thermal Microscopy", Appl. Phys. Lett., 77, 1464 (2000).
    [18] M. Leroux, B. Gil, in: J.H. Edgar, S.S. Strite, I. Akasaki, H. Amano (Eds.), INSPEC, The Institution of Electrical Engineers, Stevenage, UK, 45 (1999).
    [19] D. C. Look and J. R. Sizelove, "Predicted Maximum Mobility in Bulk GaN", Appl. Phys. Lett, 79, 1133 (2001).
    [20] U. Kaufmann, P. Schlotter, H. Obloh, K. Köhler, and M. Maier, "Hole Conductivity and Compensation in Epitaxial GaN:Mg Layers", Phys. Rev. B., 62, 10867 (2000).
    [21] D. Doppalapudi and T. D. Moustakas, in: H.S. Nalwa (Ed.), Handbook of Thin Film Materials, 4, 57 (2002).
    [22] S. Porowski and i. J. H. E. E. Grzegory, Properties of Group III Nitrides, INSPEC, The Institution of Electrical Engineers, Stevenage, UK., p76 (1994).
    [23] R. R. Reeber and K. Wang, "Lattice Parameters and Thermal Expansion of GaN", J. Mater. Res., 15, 40 (2000).
    [24] S. Krukowski, M. Leszcynski, and i. J. H. E. S. Porowski, S.S. Strite, I. Akasaki, H. Amano (Eds.), INSPEC, The Institution of Electrical Engineers, Stevenage, UK., p21 (1999).
    [25] S. O. Kucheyev, J. E. Bradby, J. S. Williams, C. Jagadish, M. Toth, M. R. Phillips, and M. V. Swain, "Nanoindentation of Epitaxial GaN Films", Appl. Phys. Lett, 77, 3373 (2000).
    [26] I. Yonenaga, T. Hoshi, and A. Usui, "Hardness of Bulk Single-Crystal Gallium Nitride at High Temperatures", Jpn. J. Appl. Phys., 39, L200 (2000).
    [27] I. Yonenaga and K. Motoki, "Yield Strength and Dislocation Mobility in Plastically Deformed Bulk Single-Crystal GaN", J. Appl. Phys., 90, 6539 (2001).
    [28] M. S. Gudiksen and C. M. Lieber, "Diameter-Selective Synthesis of Semiconductor Nanowires", J. Am. Chem. Soc., 122, 8801 (2000).
    [29] Y. Wu and P. Yang, "Germanium Nanowire Growth via Simple Vapor Transport", Chem. Mater., 12, 605-607 (2000).
    [30] E. A. Stach, P. J. Pauzauskie, T. Kuykendall, J. Goldberger, R. He, and P. Yang, "Watching GaN Nanowires Grow", Nano. Lett., 3, 867-869 (2003).
    [31] Y. Wu, R. Fan, and P. Yang, "Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires", Nano. Lett., 2, 83 (2002).
    [32] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, "Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth", Science, 270, 1791 (1995).
    [33] J. Turkervich and P. C. Hillier, "A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold", J. Discuss Faraday Soc., 11, 55-75 (1951).
    [34] M. Giersig and P. Mulvaney, "Preparation of Ordered Colloid Monolayers by Electrophoretic Deposition", Langmuir, 9, 3408-3413 (1993).
    [35] M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, "Synthesis of Thiol-Derivatised Gold Nanoparticles in a Two-Phase Liquid-Liquid System", J. Chem. Soc. Chem. Commun., 801-802 (1994).
    [36] J. B. Carroll, B. L. Frankamp, and V. M. Rotello, "Self-Assembly of Gold Nanoparticles through Tandem Hydrogen Bonding and Polyoligosilsequioxane (POSS)–POSS recognition processes ", Chem. Commun., 1892-1893 (2002).
    [37] N. Nath and A. Chilkoti, "A Colorimetric Gold Nanoparticle Sensor To Interrogate Biomolecular Interactions in Real Time on a Surface ", Anal. Chem., 74, 504-509 (2002).
    [38] P. Sandstrom, M. Boncheva, and B. Akerman, "Nonspecific and Thiol-Specific Binding of DNA to Gold Nanoparticles", Langmuir, 19, 7537-7543 (2003).
    [39] J. H. Liu, A. Q. Wang, Y. S. Chi, H. P. Lin, and C. Y. Mou, "Synergistic Effect in an Au-Ag Alloy Nanocatalyst: CO Oxidation", J. Phys. Chem. B, 109, 40-43 (2005).
    [40] W. Yan, S. M. Mahurin, B. Chen, S. H. Overbury, and S. J. Dai, "Effect of Supporting Surface Layers on Catalytic Activities of Gold Nanoparticles in CO Oxidation", J. Phys. Chem. B, 109, 15489-15496 (2005).
    [41] P. Santhosh, A. Gopalan, and K. P. Lee, "Gold Nanoparticles Dispersed Polyaniline Grafted Multiwall Carbon Nanotubes as Newer Electrocatalysts: Preparation and Performances for Methanol Oxidation", J. Catalysis, 238, 177-185 (2006).
    [42] M. S. El-Deab and T. Ohsaka, "Hydrodynamic Voltammetric Studies of the Oxygen Reduction at Gold Nanoparticles- Electrodeposited Gold Electrodes", Electrochim. Acta., 47, 4255-4261 (2002).
    [43] Yi Cui, L. J. Lauhon, M. S., Gudiksen, Jianfang Wang, and C. M. Lieber, "Diameter-Controlled Synthesis of Single-Crystal Silicon Nanowires", Appl. Phys. Lett., 78, 2214 (2001).
    [44] Mark S. Gudiksen and C. M. Lieber*, "Diameter-Selective Synthesis of Semiconductor Nanowires", J. Am. Chem. Soc., 122, 8801-8802 (2000).
    [45] Mark S. Gudiksen, Jianfang Wang, and C. M. Lieber*, "Synthetic Control of the Diameter and Length of Single Crystal Semiconductor Nanowires", J. Phys. Chem. B, 105, 4062-4064 (2001).
    [46] Song Han, Wu Jin, Tao Tang, Chao Li, Daihua Zhang, and X. Liu, "Controlled Growth of Gallium Nitride Single-Crystal Nanowires Using a Chemical Vapor Deposition Method", J. Mater. Res., 18, 245 (2003).
    [47] Chin-Kuei Kuo, Chih-Wei Hsu, Chien-Ting Wu, Zon-Huang Lan, Chung-Yuan Mou, Chia-Chun Chen, Ying-Jay Yang, Li-Chyong Chen, and K.-H. Chen, "Self-Regulating and Diameter-Selective Growth of GaN Nanowires", Nanotechnology, 17, S332-S337 (2006).
    [48] Y. Yang, M. Nogami, J. Shi, H. Chen, G. Ma, and S. J. Tang, "Enhancement of Third-Order Optical Nonlinearities in 3- Dimensional Films of Dielectric Shell Capped Au Composite Nanoparticles", J. Phys. Chem. B, 109, 4865-4871 (2005).
    [49] Xiangfeng Duan and C. M. Lieber*, "Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires", J. Am. Chem. Soc., 122, 188-189 (2000).
    [50] Ko-Wei Chang and J.-J. Wu*, "Low-Temperature Catalytic Synthesis of Gallium Nitride Nanowires", J. Phys. Chem. B, 106, 7796-7799 (2002).
    [51] C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, "Catalytic Growth and Characterization of Gallium Nitride Nanowires", J. Am. Chem. Soc., 123, 2791-2798 (2001).
    [52] X. Chen, J. Xu, R. M. Wang, and D. Yu, "High-Quality Ultra-Fine GaN Nanowires Synthesized via Chemical Vapor Deposition", Adv. Mater., 15, 419-421 (2003).
    [53] J. A. Chisholm* and P. D. Bristowe, "Formation Energies of Metal Impurities in GaN", Comput. Mater. Sci., 22, 73 (2001).
    [54] C. F. Chen, S. D. Tzeng, M. H. Lin, and S. Gwo*, "Electrostatic Assembly of Gold Colloidal Nanoparticles on Organosilane Monolayers Patterned by Microcontact Electrochemical Conversion", Langmuir, 22, 7819-7824 (2006).
    [55] S. Liu*, T. Zhu, R. Hu, and Z. Liu, "Evaporation-Induced Self-Assembly of Gold Nanoparticles into a Highly Organized Two-Dimensional Array", Phys. Chem. Chem. Phys., 4, 6059 (2002).
    [56] Y. Yamanoi, N. Shirahata, T. Yonezawa, N. Terasaki, N. Yamamoto, Y. Matsui, K. Nishio, H. Masuda, Y. Ikuhara, and H. Nishihara, "Detailed Structural Examinations of Covalently Immobilized Gold Nanoparticles onto Hydrogen-Terminated Silicon Surfaces", Chem. Eur. J., 12, 314-323 (2006).
    [57] J. Schmitt, P. Machtle, D. Eck, H. Mohwald, and C. A. Helm, "Preparation and Optical Properties of Colloidal Gold Monolayers", Langmuir, 15, 3256-3266 (1999).
    [58] Y. P. Raizer, J. E. Allen, and V. I. Kisin, "Gas Discharge Physics", ISBN: 3-540-19462-2 Springer-Verlag Berlin Heidelberg Present, Texas(1991).
    [59] B. Chapman, "Glow Discharge Processes", A Wiley-Interscience Publication, Canada, 297 (1980).
    [60] A. Grill, "Cold Plasma in Materials Fabrication From Fundamentals to Application", Handbook, IEEE Research Division(1993).
    [61] D. Xu, W. H. Yu, E. T. Kang, and K. G. Neoh, "Functionalization of Hydrogen-Terminated Silicon via Surface-Initiated Atom- Transfer Radical Polymerization and Derivatization of the Polymer Brushes", J. Colloid Interf. Sci., 279, 78-87 (2004).
    [62] Y. Joseph, I. Besnard, M. Resenberger, B. Guse, H. G. Nothofer, J. M. Wessels, U. Wild, A. K. Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, "Assembled Gold Nanoparticle/Alkanedithiol Films: Preparation, Electron Microscopy, XPS-Analysis, Charge Transport, and Vapor-Sensing Properties", J, Phys. Chem. B, 107, 7406-7413 (2003).
    [63] M.J. Tsafacka and J. Levalois-Grqtzmachera, "Plasma-Induced Graft-Polymerization of Flame Retardant Monomers onto PAN Fabrics", Surf. Coat. Tech., 200, 3503-3510 (2006).
    [64] Woo-Sung Bae, Anthony J. Convertine, Charles L. McCormick, and M. W. Urban*, "Effect of Sequential Layer-by-Layer Surface Modifications on the Surface Energy of Plasma-Modified Poly(dimethylsiloxane)", Langmuir, 23, 667-672 (2007).
    [65] Jiunn-Der Liao, Shu-Ping Lin, and Y.-T. Wu, "Dual Properties of the Deacetylated Sites in Chitosan for Molecular Immobilization and Biofunctional Effects", Biomacromolecules, 6, 392-399 (2005).
    [66] C. Z. Gu, "Enhanced Electron Emission from Diamond Film Deposited on Pre-Seeded Si Substrate with Nanosized Diamond Power", Appl. Surf. Sci., 251, 225-229 (2005).
    [67] S.F. Yoon*, K.H. Tan, Q. Zhang, M. Rusli, J. Ahn, and L. Valeri, "Effect of Microwave Power on the Electron Energy in an Electron Cyclotron Resonance Plasma", Vacuum, 61, 29-35 (2001).
    [68] Y. W. Li and C. F. Chen, "Effects of Ammonia Plasma Treatment on the Electrical Properties of Plasma-Enhanced Chemical Vapor Deposition Amorphous Hydrogenated Silicon Carbide Films", Jpn. J. Appl. Phys., 41, 5734-5738 (2002).
    [69] T. K. Sau, A. Pal, and T. Pal, "Size Regime Dependent Catalysis by Gold Nanoparticles for the Reduction of Eosin", J. Phys. Chem. B, 105, 9266-9272 (2001).
    [70] L. Schubert, P. Werner, N. D. Zakharov, G. Gerth, F. M. Kolb, L. Long, U. Gosele, and T. Y. Tan, "Silicon Nanowhiskers Grown on (111)Si Substrates by Molecular-Beam Epitaxy", Appl. Phys. Lett., 84, 4968-4970 (2004).
    [71] V. G. Dubrovskii, G. E. Cirlin, I. P. Soshnikov, A. A. Tohkikh, N. V. Sibirev, Y. B. Samsonenko, and V. M. Ustinov, "Diffusion-Induced Growth of GaAs Nanowhiskers during Molecular Beam Epitaxy: Theory and experiment", Phys. Rev. B, 71, 205325 (2005).
    [72] G. W. Sears, "A Growth Mechanism for MMercury Whiskers", Acta Metall., 3, 361-365 (1955).
    [73] M. C. Plante and R. R. LaPierre, "Growth Mechanism of GaAs Nanowires by Gas Source Molecular Beam Epitaxy", J. Cryst. Growth, 286, 394-399 (2006).
    [74] V. G. Dubrovskii and N. V. Sibirev, "General Form of the Dependences of Nanowire Growth Rate on the Nanowire Radius", J. Cryst. Growth, 304, 504-513 (2007).
    [75] E. I. Givargizov, "Fundamental Aspects of VLS Growth", J. Cryst. Growth, 31, 20-30 (1975).
    [76] Y. Wu, R. Fan, and P. Yang, "Block-by- Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires", Nano Letters, 2, 83-86 (2002).
    [77] J. Johansson, C. T. Svensson, T. Martensson, L. Samuelson, and W. Seifert, "Mass Transport Model for Semiconductor Nanowire Growth", J. Phys. Chem. B, 109, 13567-13571 (2005).
    [78] L. E. Jenssen, M. T. Bjork, S. Jeppesen, A. I. Persson, B. J. Ohlsson, and L. Samuelson, "Role of Surface Diffusion in Chemical Beam Epitaxy of InAs Nanowires", Nano Letters, 4, 1961-1964 (2004).
    [79] C. W. Chen, K. H. Chen, C. H. Shen, A. Ganguly, L. C. Chen, J. J. Wu, H. Wen, and W. F. Pong, "Anomalous Blueshift in Emission Spectra of ZnO Nanorods with Size beyond Quantum Confinement Regime", Appl. Phys. Lett., 88, 241905 (2006).
    [80] H. M. Kim, D. Y. Kim, T. W. Kang, Y. H. Cho, and K. S. Chung, "Growth and Chatacterization of Single-Crystal GaN Nanorods by Hydride Vapor Phase Epitaxy", Appl. Phys. Lett., 81, 2193 (2002).
    [81] I. Shalish, H. Temkin, and V. Narayanamuti, "Size-Dependent Surface Luminescene in ZnO Nanowires", Phys. Rev. B, 69, 245401 (2004).
    [82] Y. S. Park, C. M. Park, D. J. Fu, and T. W. Kang, "Plhtoluminescence Studies of GaN Nanorods on Si (111) Substrates Grown by Molecular-Beam Epitaxy", Appl. Phys. Lett., 85, 5718 (2004).
    [83] H. W. Seo, S. Y. Bae, J. Park, H. Yang, K. S. Park, and S. Kim, "Strained Gallium Nitride Nanowires", J. Chem. Phys., 116, (2002).
    [84] D. R. Vij, "Luminescence of Solids", Handbook, New York, U.S.A. (1998).
    [85] C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, "Catalytic Growth and Characterization of Gallium Nitride Nanowires", J. Am. Chem. Soc., 123, 2791 (2001).
    [86] S. Dhara, A. Datta, C. T. Wu, Z. H. Lan, K. H. Chen, and Y. L. Wang, "Blueshift of Yellow Luminescence Band in Self-Ion-Implanted n-GaN Nanowire", Appl. Phys. Lett., 84, 3486-3488 (2004).
    [87] S. Dhara, A. Datta, C. T. Wu, Z. H. Lan, K. H. Chen, and Y. L. Wang, "Hexagonal-to-Cubic Phase Transformation in GaN Nanowires by Ga+ Implantation", Appl. Phys. Lett., 84, 5473-5475 (2004).
    [88] M. A. Reshchikov and H. Morkoc, "Luminescence Properties of Defects in GaN", J. Appl. Phys., 97, 061301 (2005).
    [89] H. Y. Chen, H. W. Lin, C. H. Shen, and S. Gwo, "Structure and Photoluminescence Properties of Epotaxially Oriented GaN Nanorods Grown on Si(111) by Plasma-Assisted Molecular-Beam Epitaxy", Appl. Phys. Lett., 89, 243105 (2006).
    [90] H. Jin, M. Kuball, R. A. Burke, and J. M. Redwing, "Vibrational and Optical Properties of GaN Nanowires Synthesized by Ni-Assisted Catalytic Growth", Nanotechnology, 18, 445704 (2007).
    [91] B. Ha, S. H. Seo, J. H. Cho, C. S. Yoon, J. Yoo, G. C. Yi, C. Y. Park, and C. J. Lee, "Optical and Field Emission Properties of Thin Single-Crystalline GaN Nanowires", J. Phys. Chem. B, 109, 11095-11099 (2005).
    [92] C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang, and L. D. Zhang, "Catalytic Synthesis and Photoluminescence of Ga2O3 Nanowires", Appl. Phys. Lett., 78, 3202-3204 (2001).
    [93] 張玲韶, "烷硫分子與雙二茂鐵烷硫化合物自組吸附於Au(111)表面與金簇上之研究",國立中山大學化學研究所博士論文,民國92年。
    [94] K. H. Lee, C. D. Shin, I. G. Chen, and B. J. Li, "The Effect of Nanoscale Protrusions on Field-Emission Properties for GaN Nanowires", J. Electrochem. Soc., 154, K87-K91(2007).
    [95] 簡玉雪,氮化鎵奈米線的成長與性質,國立成功大學化學系研究所碩士論文,民國95年。
    [96] The data from JCPD(Joint Committee on Powder X-ray Diffraction Spectrum),80-0012,76-0703,04-0802.

    下載圖示 校內:2011-08-25公開
    校外:2012-08-25公開
    QR CODE