| 研究生: |
戴忠良 Winata, Renee |
|---|---|
| 論文名稱: |
奈米孔洞模具之製作與壓印之應用 Fabrication of Nanoporous Molds for Imprinting |
| 指導教授: |
洪昭南
Hong, Chau-Nan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 外文關鍵詞: | Nanoimprint, Nanoporous, Molds, Alumina, Polyvinyl alcohol |
| 相關次數: | 點閱:59 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Straightforward process with low cost, high throughput, and high resolution of nanostructure patterning was always the first concern of nanotechnology. Nanoimprint lithography (NIL) solved the physical limitation of neither diffraction nor scattering effect in conventional optical lithography, and simplified requirement of the technology lead to its low cost. This research combined nanoimprint lithography techniques and ceramic materials to fabricate porous mold with micron and sub-micron structures. Porous mold provide filtration function so solvent from nanoparticles solution can be filtered then nanoparticles reside on the porous mold can be transferred to another substrate with no residual layer. Porous alumina (Al2O3) mold with three-dimensional fine-patterning over multiple length scales were fabricated from mixed slurry of polyvinyl alcohol (PVA) and alumina nanosized particles in water by a replication method. Another porous mold fabricated from Anodic Aluminium Oxide (AAO) membrane and PDMS with dry etching process to remove PDMS residual layer. The results demonstrated possibilities to fabricate porous mold with micro structures by a facile approach and a simple method.
Micro and nano contact printing have been developed in order to directly fabricate microstructures with no residual layers. Ink patterns from the relief features of microstructures on porous alumina mold can be transferred to substrates by the methods. The process primarily relies on different adhesion forces of the transferring interfaces, ink/mold and ink/substrate, to transfer patterns from the relief features of the porous alumina mold to the substrate.
[1] S. Y. Chou, P. R. Krauss, P. J. Renstrom, Appl. Phys. Lett. 1995, 67, 3114-3116.
[2] P. B. Fischer and S. Y. Chou, Appl. Phys. Lett. 1993, 62, 2989-2991.
[3] International Technology Roadmap for Semiconductors 2003 Edition.
[4] S. Y. Chou, P. R. Krauss, P. J. Renstrom, Science 1996, 272, 85-87.
[5] H. Tan, A. Gilbertson, S. Y. Chou, J. Vac. Sci. Technol. B, 1998, 16, 3926-3928.
[6] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt, and C. G. Willson. Proceedings of SPIE. 1999, 3676, 379-391.
[7] Y. Xia, G. M. Whitesides, Annu. Rev. Mater. Sci. 1998, 28, 153-184.
[8] B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, G. M. Whitesides, Chem. Rev. 2005, 105, 1171-1196.
[9] B. D. Gates, Mater. Today 2005, 8, 44-49.
[10] H. Schift, L.J. Heyderman, M. Auf der Maur, J. Gobrecht, Nanotechnology 2001, 12, 173-177.
[11] L. J. Heyderman, H. Schift, C. David, J. Gobrecht, T. Schweizer, Microelectron. Eng. 2000, 54, 229-245.
[12] M. Otto, M. Bender, B. Hadam, B. Spangenberg, H. Kurz, Microelectron. Eng. 2001, 57–58, 361-366.
[13] X. Cheng and L. J. Guo, Microelectron. Eng. 2004, 71, 288-293.
[14] X. D. Huang, L. R. Bao, X. Cheng, L. J. Guo, S. W. Pang, A. F. Yee, J. Vac. Sci. Technol. B 2002, 20, 2872-2876.
[15] L. R. Bao, L. Tan, X. D. Huang, Y. P. Kong, L. J. Guo, S. W. Pang, A. F. Yee, J. Vac. Sci. Technol. B 2003, 21, 2749-2754.
[16] L. R. Bao, X. Cheng, X. D. Huang, L. J. Guo, S. W. Pang, A. F. Yee, J. Vac. Sci. Technol. B 2002, 20, 2881-2886.
[17] C. Peng, B. L. Cardozo, and S. W. Pang, J. Vac. Sci. Technol. B 2008, 26, 632-635.
[18]J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, and K.K. Unger, Pure & Appl. Chem. 1994, 66, 1739-1758.
[19] A. Jena, K. Gupta, CHARACTERIZATION OF PORE STRUCTURE OF FILTRATION MEDIA, Porous Material, Inc.
[20] R. W. Baker, Membrane Technology and Applications, 2nd edition, John Wiley & Sons Ltd, U.K., 2004.
[21] A. J. Burggraaf, ‘‘General Overview, Trends and Prospects’’; pp. 1–20 in Fundamentals of Inorganic Membrane Science and Technology, Membrane Science and Technology Series, Vol. 4, Edited by A. J. Burggraaf. Elsevier, New York, 1996.
[22] R. G. Gutman, Membrane Filtration: Technology of Pressure-Driven Cross Flow Processes, Adam Hilger, Bristol, 1987.
[23] T. Matsuura, Synthetic Membranes and Membrane Separation Processes, CRC Press, Ann Arbor, MI, 1994.
[24] W. B. Samuel de Lint, P. M. Biesheuvel, and H. Verweij, J. Colloid Interf. Sci, 2002, 251, 131–142.
[25] R. M. de Vos and H. Verweij, Science 1998, 279, 1710–1711.
[26] W. J. Koros, Y. H. Ma, and T. Shimidzu, J. Membr. Sci. 1996, 120, 149–159.
[27] B. N. Nair, K. Keizer, W. J. Elferink, M. J. Gilde, H. Verweij, and A. J.
Burggraaf, J. Membr. Sci. 1996, 116, 161–169.
[28] R.D. Noble, Membrane separations technology principles and
Applications,1999.
[29] G. Berthold, The membrane-coupled activated sludge process in
municipal wastewater treatment, Technomic Publishing Company,
Germany, 2001, 35.
[30] Y. Y. Hsing, “Treatment of Textile Effluents by H2O2/UV Oxidation
Combined with RO Separation for Reuse,” Ph.D. Department of
Water Resources and Environment Engineering, Tamkang University,
Taipei, Taiwan (2003).
[31] G. Belfort, R. H. Davis, A.L. Zydney, J. Membrane Sci. 1994, 96, 1-58.
[32] W. R. Bowen, F. Jenner, Adv. Colloid Interface Sci. 1995, 56, 141-200.
[33] J.D. Lee, S. H. Lee, M. H. Jo, P. K. Park, C. H. Lee, J. W. Kwak,
Environ. Sci. Technol. 2000, 34, 3780-3788.
[34] H. Weiss, Surf. Coat. Technol. 1995, 71, 201-207.
[35] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt, and C.G. Wilson, Proc.SPIE. 1999, 3676, 379-389.
[36] D.W. van Krevelen, Properties of Polymers, Elsevier, Amsterdam, 1976, 136-143.
[37] K.N.G. Fuller and D. Tabor, Proc. R. Soc. Lond. A 1999, 345, 327-342.
[38] M. Colburn, B. J. Choi, T. Bailey, J. Ekerdt, S. V. Sreenivasan, J. Hollenhorst, and C.G. Wilson, Proc. SPIE. 2000, 3997, 453-457.
[39] A.L. Salamone and J.S. Reed, Am. Ceram. Soc. Bull. 1979, 58, 1175-1178.
[40] Y. N. Xia, X. M. Zhao, G.M. Whitesides, Microelectron. Eng. 1996, 32, 255-268.
[41] J. Haisma, M. Verheijen, K. van den Heuvel, and J. van den Berg, J. Sci. Technol. B 1996, 14, 4124-4128.
[42] N. Roos, T. Luxbacher, T. Glinsner, K. Pfeiffer, H. Schutz, and H.C. Scheer, Proc. SPIE. 2001, 4343, 427-435.
[43] I.Martini, D. Eisert, S. Kuhn, M. Kamp, L. Worschech, J. Koeth, and A. Forchel, J. Vac. Sci. Technol. B 2000, 18, 3561-3563
[44] K.H. Haas, S. Amberg-Schwab, and K. Rose, Thin Solid Films 1999, 351, 198-203.
[45] D.Y. Kwok and A.W. Neumann, Adv. Colloid Interface Sci. 1999, 81, 167-249.
[46] X. Zhao and R. Kopelman, J. Phys. Chem. 1996, 100, 11014-11018.
[47] D.J. Resnick, W.J. Dauksher, D. Mancini, K.J. Nordquist, T.C. Bailey, S. Johnson, N. Stacey, J.G. Ekerdt, C.G. Wilson, S.V. Sreenivasan, N. Schumaker, Proc. SPIE. 2003, 5037, 12-23.
[48] M. Colburn, I. Suez, B. J. Choi, M. Meissl, T. Bailey, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson, J. Vac. Sci. Technol. B 2001, 19, 2685-2689.
[49] C. Gourgon, C. Peret, G. Micouin, F. Lazzarino, J. H. Tortai, O. Jorbert, and J.-P. E. Grolier, J. Vac. Sci. Technol. B 2003, 21, 98-105.
[50] H. Schulz, M. Wissen, and H.-C. Scheer, Microelectron. Eng. 2003, 67-68, 657-663.
[51] S. Kang, J.S. Yu, M. Krunk and M. Jaronlec, Chem. Commun. 2002, 21, 1670-1671.
[52] P. Yang, T. Deng, D. Zhao, P. Feng, D. Pine, B.F. Chmelka, G.M. Whitesides, G.D. Stucky, Science 1998, 282, 2244 – 2246.
[53] M. Trau, N. Yao, E. Kim, Y. Xia, G.M. Whitesides, I.A. Aksay, Nature
1997, 390, 674–676.
[54] H. Yang, P. Deschatelets, S.T. Brittain, G.M. Whitesides, Adv. Mater. 2001, 13, 54–58.
[55] S. Seraji, Y. Wu, N. E. Jewell-Larson, M. J. Forbess, S. J. Limmer, T. P. Chou and G. Cao, Adv. Mater. 2000, 12, 1421–1424.
[56] H. Yang, N. Coombs, G.A. Ozin, Adv. Mater. 1997, 9, 811–814.
[57] P.M. Moran, F.F. Lange, Appl. Phys. Lett. 1999, 74, 1332–1334.
[58] U.P. Schönholzer, R. Hummel, L.J. Gauckler, Adv. Mater. 2000, 12, 1261–1263.
[59] S. Donthu, Z. Pan, B. Myers, G. Shekhawat, N. Wu, V. Dravid, Nano Lett. 2005, 5, 1710–1715.
[60] S. Clemens, T. Schnell, A. Hart, F. Peter, R. Waser, Adv. Mater. 2005, 17, 1357–1361.
[61] X. Zhang, M. Honkanen, E. Levänen, T. Mäntylä, J. Cryst. Growth
2008, 310, 3674–3679.
[62] C.D. Schaper, Nano Lett. 2003, 3, 1305–1309.
[63] F. Chabert, D.E. Dunstan, G.V. Franks, J. Am. Ceram. Soc. 2008, 91, 3138 –3146.
[64] T. Thongchai, S. Larpkiattaworn, ICROS-SICE International Joint Conference 2009, 1584-1589.
[65] W. Zhou, J. Zhang, X. Li, Y. Liu, G. Min, Z. Song, J. Zhang, Applied Surface Science 2009, 255, 8019-8022.
[66] J. Garra, T. Long, J. Currie, T. Schneider, R. White, M. Paranjape, J. Vac. Sci. Technol. A 2002, 20, 975–982.
[67] C.J. Mogab, A.C. Adams, D.L. Flamm, J. Appl. Phys.1978, 49, 3796–3803.