簡易檢索 / 詳目顯示

研究生: 戴忠良
Winata, Renee
論文名稱: 奈米孔洞模具之製作與壓印之應用
Fabrication of Nanoporous Molds for Imprinting
指導教授: 洪昭南
Hong, Chau-Nan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 78
外文關鍵詞: Nanoimprint, Nanoporous, Molds, Alumina, Polyvinyl alcohol
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Straightforward process with low cost, high throughput, and high resolution of nanostructure patterning was always the first concern of nanotechnology. Nanoimprint lithography (NIL) solved the physical limitation of neither diffraction nor scattering effect in conventional optical lithography, and simplified requirement of the technology lead to its low cost. This research combined nanoimprint lithography techniques and ceramic materials to fabricate porous mold with micron and sub-micron structures. Porous mold provide filtration function so solvent from nanoparticles solution can be filtered then nanoparticles reside on the porous mold can be transferred to another substrate with no residual layer. Porous alumina (Al2O3) mold with three-dimensional fine-patterning over multiple length scales were fabricated from mixed slurry of polyvinyl alcohol (PVA) and alumina nanosized particles in water by a replication method. Another porous mold fabricated from Anodic Aluminium Oxide (AAO) membrane and PDMS with dry etching process to remove PDMS residual layer. The results demonstrated possibilities to fabricate porous mold with micro structures by a facile approach and a simple method.
    Micro and nano contact printing have been developed in order to directly fabricate microstructures with no residual layers. Ink patterns from the relief features of microstructures on porous alumina mold can be transferred to substrates by the methods. The process primarily relies on different adhesion forces of the transferring interfaces, ink/mold and ink/substrate, to transfer patterns from the relief features of the porous alumina mold to the substrate.

    Table of Contents Abstract i Acknowledgement ii Table of Contents iv Table of Figures vii List of Tables x Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Micro and Nanoimprint Technology 2 1.3 Motivation 3 Chapter 2 Literature Review 4 2.1 Nanoimprint Lithography Introduction 4 2.1.1 Thermoplastic Nanoimprint Lithography 6 2.1.2 Step and Flash Nanoimprint Lithography 7 2.1.3 Soft Lithography 8 2.1.4 Reversal Imprinting Lithography 10 2.2 Porous Material 13 2.2.1 Porous Material Introduction 13 2.2.2 Porous Ceramic 14 2.3 Membrane Technology 15 2.3.1 Filtration 16 2.3.1.1 Microfiltration 17 2.3.1.2 Ultrafiltration 17 2.3.1.3 Nanofiltration 18 2.3.1.4 Reverse Osmosis 18 2.3.2 Fouling 19 2.4 Surface Energy 21 2.5 Antisticking Layer 24 2.5.1 Self-Assembled Antisticking Layers from Alkylsiloxanes 25 2.5.2 Self Assembled Monolayer Later Formation 26 Chapter 3 Materials and Methods 28 3.1 Experimental Flowchart 28 3.2 Experimental Instrument 29 3.2.1 Hot Imprinter 29 3.2.2 Spin Coater 30 3.2.3 High Temperature Oven 31 3.2.4 Oxygen Plasma System 32 3.2.4.1 Vacuum System 32 3.2.4.2 Vacuum Gauge Controller 32 3.2.4.3 Mass Flow Controller 32 3.2.4.4 Pulsed Magnetron Power Supply 32 3.2.5 Reactive Ion Etching System 33 3.2.5.1 Vacuum System 33 3.2.5.2 Vacuum Gauge Controller 33 3.2.5.3 Mass Flow Controller 33 3.2.5.4 RF Power Generator 34 3.3 Experimental Material 34 3.3.1 Materials 34 3.3.2 Experimental Gases and Solvents 35 3.4 Experimental Procedure 36 3.4.1 Photolithography 36 3.4.2 Surface Treatment (OTS) 37 3.4.3 Porous Alumina (Al2O3) Mold 37 3.4.4 Porous Mold from AAO with PDMS Pattern 39 3.4.5 Contact Printing Using Porous Alumina Mold 41 3.5 Experimental Analysis 42 3.5.1 Scanning Electron Microscopy (SEM) 42 3.5.2 Alpha-Step IQ Surface Profiler 43 3.5.3 Contact Angle Meter 43 Chapter 4 Results and Discussions 45 4.1 Preparation of Porous Molds 46 4.2 Porous Alumina (Al2O3) Molds 48 4.2.1 Alumina (Al2O3) slurry for Patterning 48 4.2.2 Sintering Process 50 4.2.3 Porous Alumina Capability to Replicate Sub-Micron Pattern 54 4.2.4 Characteristic of Porous Alumina (Al2O3) Mold 55 4.3 Porous Mold from AAO with PDMS Structure 58 4.3.1 PDMS Etching 62 4.3.2 Alumina (Al2O3) substrates with PDMS Structure 66 4.4 Micro Contact Printing Process 67 Chapter 5 Conclusions 72 Reference 74

    [1] S. Y. Chou, P. R. Krauss, P. J. Renstrom, Appl. Phys. Lett. 1995, 67, 3114-3116.
    [2] P. B. Fischer and S. Y. Chou, Appl. Phys. Lett. 1993, 62, 2989-2991.
    [3] International Technology Roadmap for Semiconductors 2003 Edition.
    [4] S. Y. Chou, P. R. Krauss, P. J. Renstrom, Science 1996, 272, 85-87.
    [5] H. Tan, A. Gilbertson, S. Y. Chou, J. Vac. Sci. Technol. B, 1998, 16, 3926-3928.
    [6] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt, and C. G. Willson. Proceedings of SPIE. 1999, 3676, 379-391.
    [7] Y. Xia, G. M. Whitesides, Annu. Rev. Mater. Sci. 1998, 28, 153-184.
    [8] B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, G. M. Whitesides, Chem. Rev. 2005, 105, 1171-1196.
    [9] B. D. Gates, Mater. Today 2005, 8, 44-49.
    [10] H. Schift, L.J. Heyderman, M. Auf der Maur, J. Gobrecht, Nanotechnology 2001, 12, 173-177.
    [11] L. J. Heyderman, H. Schift, C. David, J. Gobrecht, T. Schweizer, Microelectron. Eng. 2000, 54, 229-245.
    [12] M. Otto, M. Bender, B. Hadam, B. Spangenberg, H. Kurz, Microelectron. Eng. 2001, 57–58, 361-366.
    [13] X. Cheng and L. J. Guo, Microelectron. Eng. 2004, 71, 288-293.
    [14] X. D. Huang, L. R. Bao, X. Cheng, L. J. Guo, S. W. Pang, A. F. Yee, J. Vac. Sci. Technol. B 2002, 20, 2872-2876.
    [15] L. R. Bao, L. Tan, X. D. Huang, Y. P. Kong, L. J. Guo, S. W. Pang, A. F. Yee, J. Vac. Sci. Technol. B 2003, 21, 2749-2754.
    [16] L. R. Bao, X. Cheng, X. D. Huang, L. J. Guo, S. W. Pang, A. F. Yee, J. Vac. Sci. Technol. B 2002, 20, 2881-2886.
    [17] C. Peng, B. L. Cardozo, and S. W. Pang, J. Vac. Sci. Technol. B 2008, 26, 632-635.
    [18]J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, and K.K. Unger, Pure & Appl. Chem. 1994, 66, 1739-1758.
    [19] A. Jena, K. Gupta, CHARACTERIZATION OF PORE STRUCTURE OF FILTRATION MEDIA, Porous Material, Inc.
    [20] R. W. Baker, Membrane Technology and Applications, 2nd edition, John Wiley & Sons Ltd, U.K., 2004.
    [21] A. J. Burggraaf, ‘‘General Overview, Trends and Prospects’’; pp. 1–20 in Fundamentals of Inorganic Membrane Science and Technology, Membrane Science and Technology Series, Vol. 4, Edited by A. J. Burggraaf. Elsevier, New York, 1996.
    [22] R. G. Gutman, Membrane Filtration: Technology of Pressure-Driven Cross Flow Processes, Adam Hilger, Bristol, 1987.
    [23] T. Matsuura, Synthetic Membranes and Membrane Separation Processes, CRC Press, Ann Arbor, MI, 1994.
    [24] W. B. Samuel de Lint, P. M. Biesheuvel, and H. Verweij, J. Colloid Interf. Sci, 2002, 251, 131–142.
    [25] R. M. de Vos and H. Verweij, Science 1998, 279, 1710–1711.
    [26] W. J. Koros, Y. H. Ma, and T. Shimidzu, J. Membr. Sci. 1996, 120, 149–159.
    [27] B. N. Nair, K. Keizer, W. J. Elferink, M. J. Gilde, H. Verweij, and A. J.
    Burggraaf, J. Membr. Sci. 1996, 116, 161–169.
    [28] R.D. Noble, Membrane separations technology principles and
    Applications,1999.
    [29] G. Berthold, The membrane-coupled activated sludge process in
    municipal wastewater treatment, Technomic Publishing Company,
    Germany, 2001, 35.
    [30] Y. Y. Hsing, “Treatment of Textile Effluents by H2O2/UV Oxidation
    Combined with RO Separation for Reuse,” Ph.D. Department of
    Water Resources and Environment Engineering, Tamkang University,
    Taipei, Taiwan (2003).
    [31] G. Belfort, R. H. Davis, A.L. Zydney, J. Membrane Sci. 1994, 96, 1-58.
    [32] W. R. Bowen, F. Jenner, Adv. Colloid Interface Sci. 1995, 56, 141-200.
    [33] J.D. Lee, S. H. Lee, M. H. Jo, P. K. Park, C. H. Lee, J. W. Kwak,
    Environ. Sci. Technol. 2000, 34, 3780-3788.
    [34] H. Weiss, Surf. Coat. Technol. 1995, 71, 201-207.
    [35] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt, and C.G. Wilson, Proc.SPIE. 1999, 3676, 379-389.
    [36] D.W. van Krevelen, Properties of Polymers, Elsevier, Amsterdam, 1976, 136-143.
    [37] K.N.G. Fuller and D. Tabor, Proc. R. Soc. Lond. A 1999, 345, 327-342.
    [38] M. Colburn, B. J. Choi, T. Bailey, J. Ekerdt, S. V. Sreenivasan, J. Hollenhorst, and C.G. Wilson, Proc. SPIE. 2000, 3997, 453-457.
    [39] A.L. Salamone and J.S. Reed, Am. Ceram. Soc. Bull. 1979, 58, 1175-1178.
    [40] Y. N. Xia, X. M. Zhao, G.M. Whitesides, Microelectron. Eng. 1996, 32, 255-268.
    [41] J. Haisma, M. Verheijen, K. van den Heuvel, and J. van den Berg, J. Sci. Technol. B 1996, 14, 4124-4128.
    [42] N. Roos, T. Luxbacher, T. Glinsner, K. Pfeiffer, H. Schutz, and H.C. Scheer, Proc. SPIE. 2001, 4343, 427-435.
    [43] I.Martini, D. Eisert, S. Kuhn, M. Kamp, L. Worschech, J. Koeth, and A. Forchel, J. Vac. Sci. Technol. B 2000, 18, 3561-3563
    [44] K.H. Haas, S. Amberg-Schwab, and K. Rose, Thin Solid Films 1999, 351, 198-203.
    [45] D.Y. Kwok and A.W. Neumann, Adv. Colloid Interface Sci. 1999, 81, 167-249.
    [46] X. Zhao and R. Kopelman, J. Phys. Chem. 1996, 100, 11014-11018.
    [47] D.J. Resnick, W.J. Dauksher, D. Mancini, K.J. Nordquist, T.C. Bailey, S. Johnson, N. Stacey, J.G. Ekerdt, C.G. Wilson, S.V. Sreenivasan, N. Schumaker, Proc. SPIE. 2003, 5037, 12-23.
    [48] M. Colburn, I. Suez, B. J. Choi, M. Meissl, T. Bailey, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson, J. Vac. Sci. Technol. B 2001, 19, 2685-2689.
    [49] C. Gourgon, C. Peret, G. Micouin, F. Lazzarino, J. H. Tortai, O. Jorbert, and J.-P. E. Grolier, J. Vac. Sci. Technol. B 2003, 21, 98-105.
    [50] H. Schulz, M. Wissen, and H.-C. Scheer, Microelectron. Eng. 2003, 67-68, 657-663.
    [51] S. Kang, J.S. Yu, M. Krunk and M. Jaronlec, Chem. Commun. 2002, 21, 1670-1671.
    [52] P. Yang, T. Deng, D. Zhao, P. Feng, D. Pine, B.F. Chmelka, G.M. Whitesides, G.D. Stucky, Science 1998, 282, 2244 – 2246.
    [53] M. Trau, N. Yao, E. Kim, Y. Xia, G.M. Whitesides, I.A. Aksay, Nature
    1997, 390, 674–676.
    [54] H. Yang, P. Deschatelets, S.T. Brittain, G.M. Whitesides, Adv. Mater. 2001, 13, 54–58.
    [55] S. Seraji, Y. Wu, N. E. Jewell-Larson, M. J. Forbess, S. J. Limmer, T. P. Chou and G. Cao, Adv. Mater. 2000, 12, 1421–1424.
    [56] H. Yang, N. Coombs, G.A. Ozin, Adv. Mater. 1997, 9, 811–814.
    [57] P.M. Moran, F.F. Lange, Appl. Phys. Lett. 1999, 74, 1332–1334.
    [58] U.P. Schönholzer, R. Hummel, L.J. Gauckler, Adv. Mater. 2000, 12, 1261–1263.
    [59] S. Donthu, Z. Pan, B. Myers, G. Shekhawat, N. Wu, V. Dravid, Nano Lett. 2005, 5, 1710–1715.
    [60] S. Clemens, T. Schnell, A. Hart, F. Peter, R. Waser, Adv. Mater. 2005, 17, 1357–1361.
    [61] X. Zhang, M. Honkanen, E. Levänen, T. Mäntylä, J. Cryst. Growth
    2008, 310, 3674–3679.
    [62] C.D. Schaper, Nano Lett. 2003, 3, 1305–1309.
    [63] F. Chabert, D.E. Dunstan, G.V. Franks, J. Am. Ceram. Soc. 2008, 91, 3138 –3146.
    [64] T. Thongchai, S. Larpkiattaworn, ICROS-SICE International Joint Conference 2009, 1584-1589.
    [65] W. Zhou, J. Zhang, X. Li, Y. Liu, G. Min, Z. Song, J. Zhang, Applied Surface Science 2009, 255, 8019-8022.
    [66] J. Garra, T. Long, J. Currie, T. Schneider, R. White, M. Paranjape, J. Vac. Sci. Technol. A 2002, 20, 975–982.
    [67] C.J. Mogab, A.C. Adams, D.L. Flamm, J. Appl. Phys.1978, 49, 3796–3803.

    下載圖示 校內:2013-08-09公開
    校外:2013-08-09公開
    QR CODE