| 研究生: |
陳玉華 Chen, Yu-Hua |
|---|---|
| 論文名稱: |
放電加工之表面裂紋敏感性研究 Surface Crack Susceptibility of Electro-discharge Machining Process |
| 指導教授: |
李驊登
Lee, Hwa-Teng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 裂紋敏感性 、放電加工 、碳當量 、熱傳導係數 |
| 外文關鍵詞: | EDM, crack susceptibility, carbon equivalent, thermal conductivity |
| 相關次數: | 點閱:89 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討放電加工參數與材料特性對放電加工表面裂紋敏感性的影響。實驗中先分析放電電流、放電持續時間以及衝擊因子對碳素工具鋼JIS SKS93表面裂紋敏感性影響,界定出臨界裂縫曲線後,再針對常用鋼料:SNCM439、SCM440、SKS2、SK2、SKH9和SKD11進行放電加工,並將表面裂紋型態做歸納,次探討其成因。
綜合七種鋼料之放電裂紋型態,可歸納為下列五種:穿孔裂紋、交界裂紋、輻射狀裂紋、網狀裂紋與積碳裂紋,其中穿孔裂紋、交界裂紋以及網狀裂紋為最基本的裂紋擴展型態,而輻射狀裂紋與網狀裂紋多見於長持續時間之加工表面,積碳裂紋則大多於衝擊因子較大時,不穩定放電下所形成。
研究結果顯示,藉由提高放電電流不但可有效改善材料移除率,並能降低材料裂紋敏感性,然而提高放電電流雖能有效降低表面裂紋密度,但當電流超過8A以上時,所產生之裂紋寬度往往較寬,且深入至熱影響區的比例亦較高。而當持續時間為70μs以下時,總裂紋面積則有隨放電電流增加而減少的現象。此外,衝擊因子越大,表面裂紋密度越高,但本實驗改變衝擊因子並未造成白層厚度及組織的不同,因此裂紋寬度並無顯著的差異存在。鋼料裂紋敏感性除了隨放電電流的增加與持續時間的縮短而降低外,其合金元素所換算之碳當量值越小,或熱傳導係數越高時,亦能有效降低其裂紋敏感性。綜合所述,鋼料裂紋敏感性由小至大依序為:低合金鋼、碳素工具鋼、高速鋼、冷作工具鋼。
The research is to evaluate the crack susceptibility of EDMed surface by changing the parameters of EDM and material properties. In the beginning of this research, the surface crack susceptibility of JIS SKS93, a high carbon tool steel, was analyzed with EDM parameters:peak current, pulse duration, and duty factor, and then marked a crack critical line (CCL) curve. Furthermore, the type of EDMed surface crack of JIS SNCM439, SCM440, SKS2, SK2, and SKH9, the steel in common use, was generalized and discussed as its relation.
According to the former results, the EDMed surface cracks could be categorized as Pore Crack, Contour Crack, Network Crack, Radiate Form Crack and Arcing Crack. Among them, the former three cracks are assumed as basic types. Radiate Form Crack and Network Crack are thought to occur under long pulse duration processing, and Arcing Crack usually appears due to unstable discharge machining.
The results revealed that a higher peak current could not only improve the material removal rate, but also reduce the surface crack susceptibility. Although the peak current may restrain the density of surface crack, it promoted the cracks to become wider and made the cracks extend into the Heat-Affected Zone as it exceeded 8A. When pulse duration time is below 70μs, the total area of crack reduces with the raise of peak current. Moreover, the larger Duty Factor is, the higher the density of surface crack. The crack widths of various Duty Factors are alike due to the similarity of thickness and the analogy of microstructure of white layer in all conditions. The results also indicate that not only increasing the peak current and shortening the pulse duration time, but also a lower carbon equivalent and a higher thermal conductivity of steel could reduce and improve the surface crack susceptibility. As a conclusion, the steel sequence from low crack susceptibility to high one is low alloy steel, carbon tool steel, high speed steel, cold work steel.
1.W. Zhang and K. Osamur, Met. Trans. B22, 1991
2.Y. Y. Yang, H. S. Fang and W. G. Huang,“A Study on Wear Resistance of the White Layer,”Tribology International, Vol.29, No.5, pp.425-428, 1996
3.L. C. Lee, L. C. Lim, Y. S. Wong,“Crack Susceptibility of Electro- discharge Machined,”Journal of Materials Processing Technology, Vol.29, pp.213-221, 1992
4.于劍平,“放電加工表面特性之研究”,成功大學機械工程研究所博士論文,2002
5.董光雄 ,“放電加工”,復文書局出版, pp.74-75,1988
6.井上潔 原著,黃錦鐘 譯,“放電加工”,高立圖書出版,pp.20,1998
7.C.J. Heuvelman, H.J. Horsten and P.C. Venstra,“An Introductory Investigation of the Break Down Mechanism in EDM,”Ann. CIRP, Vol.20, No.1, pp.43, 1971
8.J. R. Crookall and C. J. Heuvelman,“EDM:the state of the art,”Ann. CIRP, Vol.20, No.2, pp.113, 1971,
9.C.J. Heuvelman and B.L. Ten Horm,“Review of Cooperative Work on EDM in STC’E’ of CIRP,”Ann. CIRP, Vol.23, No.2, pp.213, 1974,
10.YAWJET,CNC EDM21操作手冊, 1990
11.楊永名,“放電加工參數與加工表面特性對量測殘留應力之影響評估”,成功大學機械工程研究所碩士論文,1996
12.童文煥,“放電加工鑽孔白層與引進殘留應力之關連性研究”,成功大學機械工程研究所碩士論文,1998
13.林培欽,“放電加工鑽孔引進殘留應力之研究”,成功大學機械工程研究所碩士論文,1998
14.鄒大鈞 譯,“放電加工”,復漢出版,pp.43-44,2000
15.Monde A. Otooni(Ed.),“Elements of Rapid Solidification,”Springer Series in Materials Science 29, pp.1-7, 1998
16.林楠盛,“放電加工之應用技術”,機械工業雜誌,82卷, pp.203-215,1990
17.L. C. Lim, L. C. Lee, Y. S. Wong, and H. H. Lu,“Solidification Microstructure of Electrodischarge Machined Surfaces of Tool Steels,”Materials Science and Technology, Vol.7, pp.239-248, 1991
18.盧錦均,“球墨鑄鐵之放電加工表面急速凝固之Al及Si電極效應探討”,成功大學材料科學及工程學系碩士論文,2002
19.N. Mohri, N. Saito, Y. Tsunekawa,“Metal Surface Modification by Electrical Discharge Machining with Composite Electrode,”Ann. CIRP, Vol.42, pp.219-222, 1993
20.Tobias Noethe, Funkenerosives Mikrobearbeitung von Stahl und Hartmetall durch Schneiden mit dunnen Draehten, Dissertation RWTH Aachen, 2001
21.John Worbye, “Guidelines for EDM of Tool Steels,”Precision Metal, October, pp.11-16, 1987
22.八高隆雄,長谷川 正,“超硬合金之放電加工條件與表面裂縫深度間的關連性”,日本機械學會論文集 (C編),61卷,583號,pp.456-461,1995
23.A. G. Mamalis, G. C. Vosniakos, N. M. Vaxevanidis and J. Prohaszka,“Macroscopic and Microscopic Phenomena of Electro-discharge Machined Steel Surfaces: an experimental investigation,”Journal of Mechanical Working Technology, Vol.15, pp.335-356, 1987
24.許富銓,“放電加工鑽孔法量測殘留應力之校正研究”,成功大學機械工程研究所碩士論文,pp.65-71,2000
25.陳柏瑋,“尺寸效應對放電加工後表面粗糙度與裂縫的影響”,成功大學機械工程研究所碩士論文,2003
26.L. C. Lee, L. C. Lim, Y. S. Wong and H. H. Lu,“Towards A Better Understanding of the Surface Features of Electro-discharge Machined Tool Steels,”Journal Materials Processing Technology, Vol.24, pp.513-523, 1990
27.J. C. Rebelo, A. Morao Dias, D. Kremer, J. L. Lebrun,“Influence of EDM Pulse Energy on the Surface Integrity of Martensitic Steels,”Journal of Materials Processing Technology, Vol.84, pp.90-96, 1998
28.L. C. Lee, L. C. Lim, V. Narayanan, V. C. Venkatesh,“Quantification of Surface Damage of Tool Steels after EDM,”International Journal of Machine Tool and Manufacture, Vol.28, No.4, pp.359-372, 1988
29.J. E. Greene and J. L. Guerrero-Alvarez,“Electro-erosion of Metal Surfaces,”Metallurgical Transactions, Vol.5, pp.695-706, 1974
30.M. A. E.-R. Merdan and R. D. Arnell,“Surface Integrity of a Die Steel after Electrodischarge Machining: 1. Structure Composition, and Hardness,”Surface Engineering, Vol.5, No.2, pp.158-164, 1989
31.褚方 勳,“放電加工表面殘留應力與變質層”,應用機械工學,pp.90-95,1989
32.Isao Ogata, Yoshitsugu Mukoyama, Masahiko Hihara,“Study on Residual Stress of Wire-EDM’s Surface-Relationship between Machining Condition and Stress Distribution,”精密工學會誌, Vol.57, pp.144-149, 1991
33.Kijoto Hashiguchi, Yukichi Kmiide, Hirohumi Okamoto, Takeo Ikai, Ichiro fujita,“On Depth of Heat Effect Layer under Surface of Workpiece in EDM,”電氣加工學會誌, Vol.27,No.56,pp.25-37,昭和56
34.L. C. Lee, L. C. Lim and Y. S. Wong,“Towards Crack Minimization of EDMed Surfaces,”Journal of Materials Processing Technology, Vol.32, pp.45-54, 1992
35.W. J. Tomlinson and J. R. Adkin,“Microstructure and Properties of Electrodischarge Machined Surfaces,”Surface Engineering, Vol.8, No.4, pp.283-288, 1992
36.Randall Bormann,“Understanding Die-Sinking EDM Surface Integrity,”Carbide and Tool Journal(November/December), pp.12-16
37.C. P. Tabrett,“The Electro-discharge Machining Surfaces of High -chromium White Irons,”Journal of Materials Science Letters 15, pp.1792-1794, 1996
38.顏炳華,陳順隆,“放電加工液添加鋁粉之加工特性研究”,中國機械工程學會第八屆研討會,pp.845-851,1991
39.張仲卿,“碳化鎢放電加工之熱效應對熱裂生成之影響”,行政院國家科學委員會專題研究計畫成果報告,計畫編號:NSC 87-2212-E-168-005,1998
40.Saito, N.,“Strength Deterioration of Sintered TiB2 Produced by EDM and its Recovering Technology,”Journal of the Japan Society of Precision Engineering, Vol.59, No.2, pp.293-298, 1993
41.Q. Y. Ming, L. Y. He,“Powder-Suspansion Dielectric Fluid for EDM,”Journal of Materials Processing Technology, Vol.52, pp,44-54, 1995
42.ASM,“Heat Treater’s Guide,”1986
43.日立YSS高級特殊鋼成分規格書,2002
44.M. Bayramoglu and A. W. Duffill,“Manufacturing Linear and Circular Contours Using CNC EDM Frame Type Tools,”Institute Journal of Tools Manufacturing, Vol.35, pp.1125-1136, 1995
45.陳玉華,李驊登,許富銓,戴子堯,“電極尺寸對放電加工表面特性之影響評估”,第十九屆機械工程研討會論文集,D2-012,2002
46.P. C. Pandey and S. T. Jilani,“Plasma Channel Growth and the Resolidified Layer in EDM,”Precision Engineering, Vol.8, No.2, pp.104-110, 1986
47.P. F. Thomson,“Surface Damage in Electrodischarge Machining,”Materials-Science and Technology, Vol.5, pp.1153-1157, 1989
48.H. Laplanche,“The Maurer Diagram, it’s Errors and Evolution,”Met Constr. Mec., Vol.98, pp.629-635, 1966
49.M. J. Fleetwood,“Rapid Solidification Process,”Metals and Materials, Japan, pp.14-20, 1987
50.Monde A. Otooni(Ed.),“Elements of Rapid Solidification,”Springer Series in Materials Science 29, pp.1-7, 1998
51.H. Shingu, K. Kobayashi and O. Zakir,“An Amorphous Phase in Splat-cooled Fe-3.8wt﹪C alloy,”Scripta Metallurgy, Vol.8, pp.1317-1320, 1974
52.M. A. E.-R. Merdan, R. D. Arnell,“The Surface Integrity of a Die Steel after Electrodischarge Machining:2. Residual Stress Distribution,”Surface Engineering, Vol.7, No.2, pp.154~158, 1991
53.Principles and Technology of the Fusion Welding of Metals, Vol.1, Mechanical Engineering Publishing Co., Peking, China, 1979
54.Medovar, B. I.: Avtomatischeskaya Svarka, 6:3, 1953
55.Twitty, M. D.: BCIRA J., 8:144, 1960
56.Van Zeghem, J., and De Sy, A.: Mod. Cast., 48:100,1965
57.Spencer, D.,Mehrabian, R., and Flemings, M. C. : Metall. Trans., 3:1925, 1972
58.Stoody company,“Stoody Hard-Facing Guide Book”
59.Linnert, G. E., Welding Metallurgy, Vol.2. 3rd Ed. American Welding Society, Miami, FL, 1967
60.Properties and Selection of Metals, 8th edition, Vol.1
61.http://www.matls.com
62.http://www.sz-metal.si/products/steels/MERILOEX.pdf
63.Sindo Kou,“Welding Metallurgy,”Wiley-Interscience publication, pp.219,1987
64.Dibitonto, D. D., P. T. Eubarik, M. R. Patel and M. A. Barrufet,“Theoretical models of the electrical discharge machining process. I. A. simple cathode erosion model,”Journal of Applied Physics, Vol.66, No.9, pp.4095~4103,1989