簡易檢索 / 詳目顯示

研究生: 何振宇
Ho, Chen-Yu
論文名稱: 利用共振腔設計產生低M-squared光束品質的圓柱向量光束
Cavity design for the generation of cylindrical vector beam with low M-squared beam quality
指導教授: 魏明達
Wei, Ming-Dar
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 48
中文關鍵詞: 圓柱向量光束G1G2M2品質因子
外文關鍵詞: cylindrical vector beam, G1G2, M-squared quality factor
相關次數: 點閱:138下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要利用四面鏡共振腔的設計來產生圓柱向量偏振光,利用泵源光進入雙折射晶體Nd:GdVO4後造成e-ray和o-ray的分離,做出徑向圓柱偏振或方向角圓柱偏振光。在G1G2乘積為0跟1之間的穩定區範圍內,藉由調控共振腔的長度,可以得到不同的光形變化,而當在第一段長度Z1為9.61 cm時,可在較廣的範圍內觀察到圓柱向量光束,且在特定長度下,圓柱向量光束有很小的發散角度且功率穩定,同時光在空間分佈上有著不錯的偏振度,經由M2的量測方法下,算出圓柱向量光束有低品質因子Mx和My約在3左右。

    In this thesis, the design of the four-mirror resonance cavity is mainly used to generate cylindrical vector beam, which is produced by separating e-ray and o-ray from birefringence crystal Nd:GdVO4. Radially polarized beam can be cause from e-ray and azimuthally polarized beam from o-ray. In the stable range between 0 and 1, different patterns can be obtained by adjusting the length of the resonance cavity. When the first length of Z1 is 9.61 cm, the cylindrical vector beam can be observed in a wide range. Under the specific length, the cylindrical vector beam has a small divergence angle and power stability. At the same configuration, cylindrical vector beam has a good polarization in spatial distribution, and the M-squared quality factor of the cylindrical vector beam is demonstrated with a low value.

    摘要 I SUMMARY II 致謝 V 目錄 VII 圖目錄 IX 第一章緒論 1 1.1 簡介 1 1.2 研究動機與目的 4 第二章圓柱向量光束 5 2.1原理 5 2.1.1圓柱向量光束的基本特性 5 2.1.2圓柱向量光產生機制 8 2.1.3共振腔設計之穩定區範圍 9 2.1.4 M-squared品質因子 13 2.2 圓柱向量光的產生與光形變化 15 2.2.1實驗架構和步驟 15 2.2.2 G1G2模擬範圍 20 2.2.3腔長不同的產生雷射範圍 26 2.2.4腔長對應光形的特性及變化 28 2.2.5不同共振腔下之圓柱向量光束 39 第三章結論與未來展望 44 3.1 結論 44 3.2未來展望 45 參考文獻 46

    1. Q. Zhan, "Cylindrical vector beams: from mathematical concepts to applications," Adv. Opt. Photon.1, 1-57 (2009).
    2. Y. Mushiake, K. Matsumura, and N. Nakajima, "Generation of radially polarized optical beam mode by laser oscillation," Proc. IEEE 60, 1107-1109 (1972).
    3. D. Pohl, "Operation of a ruby laser in the purely transverse electric mode TE01," Appl. Phys. Lett.20, 266-267 (1972).
    4. S. Sato, Y. Harada, and Y. Waseda, "Optical trapping of microscopic metal particles," Opt.Lett.19, 1807-1809 (1994).
    5. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett.78, 4713 (1997).
    6. B. Hafizi, E. Esarey, and P. Sprangle, "Laser-driven acceleration with Bessel beams," Phys. Rev. E 55, 3539 (1997).
    7. M. Meier, V. Romano, and T. Feurer, "Material processing with pulsed radially and azimuthally polarized laser radiation," Appl. Phys. A 86, 329-334 (2007).
    8. V. Niziev, and A. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D Appl. Phys.32, 1455 (1999).
    9. L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett.86, 5251 (2001).
    10. S. C. Tidwell, D. H. Ford, and W. D. Kimura, "Generating radially polarized beams interferometrically," Appl. Opt.29, 2234-2239 (1990).
    11. M. Bashkansky, D. Park, and F. K. Fatemi, "Azimuthally and radially polarized light with a nematic SLM," Opt.Express 18, 212-217 (2010).
    12. H. Kawauchi, Y. Kozawa, and S. Sato, "Generation of radially polarized Ti: sapphire laser beam using a c-cut crystal," Opt.Lett.33, 1984-1986 (2008).
    13. Y. Kozawa, and S. Sato, "Generation of a radially polarized laser beam by use of a conical Brewster prism," Opt. Lett.30, 3063-3065 (2005).
    14. M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, "Multilayer polarizing grating mirror used for the generation of radial polarization in Yb: YAG thin-disk lasers," Opt.Lett.32, 3272-3274 (2007).
    15. K. Yonezawa, Y. Kozawa, and S. Sato, "Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd: YVO4 crystal," Opt.Lett.31, 2151-2153 (2006).
    16. M. D. Wei, Y. S. Lai, and K. C. Chang, "Generation of a radially polarized laser beam in a single microchip Nd:YVO4 laser," Opt. Lett.38, 2443-2445 (2013).
    17. S. Vyas, Y. Kozawa, and S. Sato, "Generation of radially polarized Bessel–Gaussian beams from c-cut Nd: YVO4 laser," Opt.Lett.39, 1101-1104 (2014).
    18. K.-C. Chang, and M.-D. Wei, "Generation and transformation of azimuthal and radial polarization in a typically three-element Nd: GdVO4 laser," Proc. of SPIE Vol. 9194, p. 919415 (2014).
    19. K.-G. Hong, B.-J. Hung, and M.-D. Wei, "Low threshold of a continuous-wave mode-locked and azimuthally polarized Nd:YVO4laser with a semiconductor saturable absorber mirror," J. Opt.18 (2016).
    20. A. E. Siegman, "Lasers, chapt. 17," (University Science Books, Mill Valley, CA, 1986).
    21. M.-D. Wei, and W.-F. Hsieh, "Cavity-configuration-dependent nonlinear dynamics in Kerr-lens mode-locked lasers," J. Opt. Soc. Am. B 17, 1335-1342 (2000).
    22. A. E. Siegman, "How to (maybe) measure laser beam quality," in Diode Pumped Solid State Lasers: Applications and Issues(Optical Society of America), p. MQ1.(1998)
    23. Y. Du, "Measurement of M2-curve for asymmetric beams by self-referencing interferometer wavefront sensor," Sensors 16, 2014 (2016).
    24. A. Ito, Y. Kozawa, and S. Sato, "Selective oscillation of radially and azimuthally polarized laser beam induced by thermal birefringence and lensing," J. Opt. Soc. Am. B 26, 708-712 (2009).
    25. I. Moshe, S. Jackel, and A. Meir, "Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects," Opt.Lett.28, 807-809 (2003).
    26. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, "The formation of laser beams with pure azimuthal or radial polarization," Appl. Phys. Lett.77, 3322-3324 (2000).
    27. P. Bélanger, "Beam propagation and the ABCD ray matrices," Opt.Lett.16, 196-198 (1991).
    28. T. F. Johnston Jr, and M. W. Sasnett, "Characterization of Laser Beams: The M2 Model," in Handbook of Optical and Laser Scanning, Second Edition, pp. 26-93.(2016)
    29. X. Luo, P. Chen, and Y. Wang, "Power content M2-values smaller than one," Appl. Phys. B 98, 181 (2010).
    30. A. E. Siegman, "New developments in laser resonators," in Optical resonators(International Society for Optics and Photonics), pp. 2-15.(1990)
    31. H. Yu, Y. Liu, A. Braglia, G. Rossi, and G. Perrone, "Investigation of collimating and focusing lenses’ impact on laser diode stack beam parameter product," Appl.Opt.54, 10240-10248 (2015).

    下載圖示 校內:2021-07-26公開
    校外:2022-07-26公開
    QR CODE