| 研究生: |
吳佳芸 Wu, Chia-Yun |
|---|---|
| 論文名稱: |
ZAP70在調控T淋巴細胞移動之化學趨化方向性的角色 The role of ZAP70 in regulating the chemotactic directionality of T lymphocyte migration |
| 指導教授: |
楊倍昌
Yang, Bei-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | T淋巴細胞 、化學趨化方向性 |
| 外文關鍵詞: | ZAP70, chemotactic directionality, firm adhesion |
| 相關次數: | 點閱:67 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
T淋巴細胞過度累積在發炎處會造成發炎病程的惡化,它是導致慢性發炎疾病的原因之一。因此了解T淋巴細胞遷移而累積在發炎處的機制,是澄清許多發炎相關疾病的重要課題。T淋巴細胞遷移受到化學趨化物(chemoattractants)以及整合素受體 (integrin receptors)傳遞的訊號所調控。ZAP70,不只是結合在T細胞受體胞內區調控T細胞活化重要的酪氨酸激酶(tyrosine kinase),它同時也受到SDF-1-CXCR4信號的活化而調控T細胞的趨向性移動。先前的研究顯示,Jurkat T細胞若有ZAP70缺陷(P116 T細胞)則失去對SDF-1的趨向性移動,此功能失常的原因是由於失去移動的方向性而非其運動性。目前,ZAP70調控T淋巴細胞移動的方向性之機制尚未完全明瞭。為了在T細胞動態移動中研究ZAP70的功能角色,我們構建hZAP70與螢光蛋白EGFP結合的融合蛋白,並將此hZAP70-EGFP融合蛋白轉染至T細胞中。在Jurkat與P116 T細胞中表現的hZAP70-EGFP融合蛋白可被SDF-1刺激而活化,並且仍保有其激酶的功能。表現hZAP70-EGFP可讓P116 T細胞對MCF-7細胞的條件培養液與SDF-1的穿透性移動以及方向性回復正常。但是ZAP70蛋白並不會影響T細胞移動的距離和速度。ZAP70蛋白促進T細胞與細胞外基質間形成穩定的黏著,而且SDF-1刺激ZAP70活化1整合素(1 integrin)後讓T細胞的黏附能力更提高。在懸浮的T細胞中hZAP70-EGFP綠色螢光蛋白均勻的分布於細胞膜附近。在cell^R即時影像研究中可見,聚集在移動中的T細胞前端之hZAP70-EGFP蛋白可能與控制方向性偽足的形成有關。在移動的細胞中hZAP70-EGFP蛋白先聚集到細胞前端後吸引骨架蛋白Talin聚集到相近的位置,爾後牽引著肌動蛋白細絲(actin filament)前來,三者共同控制方向性偽足的形成。綜合以上的結果顯示,ZAP70蛋白增加T淋巴細胞與細胞外基質的黏附性,並且與骨架蛋白Talin、肌動蛋白細絲(actin filament)一同調控方向性偽足的形成,控制著T淋巴細胞的趨向性移動之方向性。
Aberrant accumulation of T lymphocytes in the site of inflammation will promote the inflammation into chronic inflammation disorders. Comprehending the mechanism of T lymphocyte migration is critical for clarifying the etiology of many inflammation related disorders. T lymphocyte migration is a highly integrated process that regulates by chemoattractants and different sets of integrin receptors mediated signaling. It has been shown that ZAP70, an important tyrosine kinase binding to intracellular domain of T cell receptor, is also activated by SDF-1-CXCR4 signaling for T lymphocyte chemotaxis. Our previous studies showed that ZAP70-deficient Jurkat T cells (P116 T cells) exhibit impaired migration toward chemokine SDF-1 due to loss of the directionality but not the motility. However, the mechanism regulating the direction of T lymphocyte migration by ZAP70 is not clear so far. To investigate how ZAP70 regulated the direction of T lymphocyte migration, we have constructed ZAP70-EGFP fusion protein for easily studying the dynamic location of ZAP70 during living T cell migration and we transfected the hZAP70-EGFP plasmid into T cells. hZAP70-EGFP fusion protein of Jurkat and P116 T cells could be activated by chemokine SDF-1 stimulation and had its kinase function. hZAP70-EGFP transfected P116 T cells restored the transmigration rate and the directionality toward conditioned medium of MCF-7 cells and chemokine SDF-1, but ZAP70 protein did not significant affect the migration distance and velocity of T cells. ZAP70 proteins increased the firm adhesion of T cells on the extracellular matrix (ECM) and chemokine SDF-1 simulation of ZAP70 kinase activity to activate 1 integrin further enhanced the adhesion ability. Fluorescence microscopic imaging showed that hZAP70-EGFP located close to the membrane of suspension T cells. Using cell^R time-lapse imaging system, we observed that hZAP70-EGFP accumulated close to the leading edge in migrating T cells may guide the directional lamellipodia formation. Besides, hZAP70-EGFP accumulated close to the leading edge recruited cytoskeletal protein Talin, followed by actin filament that regulated the directional lamellipodia formation. In conclusion, ZAP70 protein regulated the chemotactic directionality of T lymphocyte migration by firm adhesion onto the ECM and associated with Talin and actin filament to modulate the directional lamellipodia formation.
1. Medoff, B.D., Thomas, S.Y. & Luster, A.D. T Cell Trafficking in Allergic Asthma: The Ins and Outs. Annual Review of Immunology 26(1), 205-232 (2008).
2. Luster, A.D., Alon, R. & von Andrian, U.H. Immune cell migration in inflammation: present and future therapeutic targets. Nature Immunology 6(12), 1182-1190 (2005).
3. Ridley, A.J. Cell Migration: Integrating Signals from Front to Back. Science 302(5651), 1704-1709 (2003).
4. Pribila, J.T., Quale, A.C., Mueller, K.L. & Shimizu, Y. Integrins and T cell-mediated immunity. Annu Rev Immunol 22, 157-180 (2004).
5. Steeber, D.A. et al. Efficient Lymphocyte Migration Across High Endothelial Venules of Mouse Peyers Patches Requires Overlapping Expression of L-Selectin and ß7 Integrin. The Journal of Immunology 161(12), 6638-6647 (1998).
6. Wagner, N. et al. L-selectin and β7 integrin synergistically mediate lymphocyte migration to mesenteric lymph nodes. European Journal of Immunology 28(11), 3832-3839 (1998).
7. Chan, P.Y. & Aruffo, A. VLA-4 integrin mediates lymphocyte migration on the inducible endothelial cell ligand VCAM-1 and the extracellular matrix ligand fibronectin. Journal of Biological Chemistry 268(33), 24655-24664 (1993).
8. Rose, D.M., Grabovsky, V., Alon, R. & Ginsberg, M.H. The Affinity of Integrin α4β1 Governs Lymphocyte Migration. The Journal of Immunology 167(5), 2824-2830 (2001).
9. Zlotnik, A. & Yoshie, O. Chemokines: A New Classification System and Their Role in Immunity. Immunity 12(2), 121-127 (2000).
10. Murphy, P.M. et al. International Union of Pharmacology. XXII. Nomenclature for Chemokine Receptors. Pharmacological Reviews 52(1), 145-176 (2000).
11. Moser, B. & Loetscher, P. Lymphocyte traffic control by chemokines. Nat Immunol 2(2), 123-128 (2001).
12. Bleul, C.C., Fuhlbrigge, R.C., Casasnovas, J.M., Aiuti, A. & Springer, T.A. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). The Journal of Experimental Medicine 184(3), 1101-1109 (1996).
13. Nanki, T. et al. Stromal Cell-Derived Factor-1-CXC Chemokine Receptor 4 Interactions Play a Central Role in CD4+ T Cell Accumulation in Rheumatoid Arthritis Synovium. The Journal of Immunology 165(11), 6590-6598 (2000).
14. Ganju, R.K. et al. The α-Chemokine, Stromal Cell-derived Factor-1α, Binds to the Transmembrane G-protein-coupled CXCR-4 Receptor and Activates Multiple Signal Transduction Pathways. Journal of Biological Chemistry 273(36), 23169-23175 (1998).
15. Chan, A.C., Iwashima, M., Turck, C.W. & Weiss, A. ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR zeta chain. Cell 71(4), 649-662 (1992).
16. Deindl, S. et al. Structural Basis for the Inhibition of Tyrosine Kinase Activity of ZAP-70. Cell 129(4), 735-746 (2007).
17. Au-Yeung, B.B. et al. The structure, regulation, and function of ZAP-70. Immunol Rev 228(1), 41-57 (2009).
18. Hatada, M.H. et al. Molecular basis for interaction of the protein tyrosine kinase ZAP-70 with the T-cell receptor. Nature 377(6544), 32-38 (1995).
19. Ottoson, N.C., Pribila, J.T., Chan, A.S.H. & Shimizu, Y. Cutting Edge: T Cell Migration Regulated by CXCR4 Chemokine Receptor Signaling to ZAP-70 Tyrosine Kinase. The Journal of Immunology 167(4), 1857-1861 (2001).
20. Ticchioni, M. et al. Signaling through ZAP-70 is required for CXCL12-mediated T-cell transendothelial migration. Blood 99(9), 3111-3118 (2002).
21. Lin, Y.-P., Cheng, Y.-J., Huang, J.-Y., Lin, H.-C. & Yang, B.-C. Zap70 controls the interaction of talin with integrin to regulate the chemotactic directionality of T-cell migration. Molecular Immunology 47(11-12), 2022-2029 (2010).
22. Zhang, W., Sloan-Lancaster, J., Kitchen, J., Trible, R.P. & Samelson, L.E. LAT: The ZAP-70 Tyrosine Kinase Substrate that Links T Cell Receptor to Cellular Activation. Cell 92(1), 83-92 (1998).
23. Luboshits, G. et al. Elevated Expression of the CC Chemokine Regulated on Activation, Normal T Cell Expressed and Secreted (RANTES) in Advanced Breast Carcinoma. Cancer Research 59(18), 4681-4687 (1999).
24. Cyster, J.G. Chemokines and Cell Migration in Secondary Lymphoid Organs. Science 286(5447), 2098-2102 (1999).
25. Krüger K & FC., M. T cell homing and exercise. Exerc Immunol Rev.(13), 37-54 (2007).
26. Patarroyo, M. & Makgoba, M. Leucocyte adhesion to cells in immune and inflammatory responses. The Lancet 334(8672), 1139-1142 (1989).
27. Plouffe, B.D., Kniazeva, T., Mayer, J.E., Murthy, S.K. & Sales, V.L. Development of microfluidics as endothelial progenitor cell capture technology for cardiovascular tissue engineering and diagnostic medicine. The FASEB Journal 23(10), 3309-3314 (2009).
28. Murthy, S.K., Sin, A., Tompkins, R.G. & Toner, M. Effect of Flow and Surface Conditions on Human Lymphocyte Isolation Using Microfluidic Chambers. Langmuir 20(26), 11649-11655 (2004).
29. Fernandis, A.Z., Cherla, R.P. & Ganju, R.K. Differential Regulation of CXCR4-mediated T-cell Chemotaxis and Mitogen-activated Protein Kinase Activation by the Membrane Tyrosine Phosphatase, CD45. Journal of Biological Chemistry 278(11), 9536-9543 (2003).
30. Laudanna, C., Campbell, J.J. & Butcher, E.C. Role of Rho in Chemoattractant-Activated Leukocyte Adhesion Through Integrins. Science 271(5251), 981-983 (1996).
31. Laudanna, C., Campbell, J.J. & Butcher, E.C. Elevation of Intracellular cAMP Inhibits RhoA Activation and Integrin-dependent Leukocyte Adhesion Induced by Chemoattractants. Journal of Biological Chemistry 272(39), 24141-24144 (1997).
32. Friedl, P. & Wolf, K. Proteolytic interstitial cell migration: a five-step process. Cancer and Metastasis Reviews 28(1), 129-135 (2009).
33. Ridley, A.J. Rho GTPases and cell migration. Journal of Cell Science 114(15), 2713-2722 (2001).
34. Ridley, A.J. et al. Cell migration: integrating signals from front to back. Science 302(5651), 1704-1709 (2003).
35. Kaufmann, S., Piekenbrock, T., Goldmann, W.H., Bärmann, M. & Isenberg, G. Talin binds to actin and promotes filament nucleation. FEBS Letters 284(2), 187-191 (1991).
36. Arpaia, E., Shahar, M., Dadi, H., Cohen, A. & Rolfman, C.M. Defective T cell receptor signaling and CD8+ thymic selection in humans lacking Zap-70 kinase. Cell 76(5), 947-958 (1994).
37. Isakov, N., Wange, R. & Samelson, L. The role of tyrosine kinases and phosphotyrosine-containing recognition motifs in regulation of the T cell-antigen receptor-mediated signal transduction pathway. Journal of Leukocyte Biology 55(2), 265-271 (1994).
38. van Oers*, N.S.C. & Weiss*, A. The Syk/ZAP-70 protein tyrosine kinase connection to antigen receptor signalling processes. Seminars in Immunology 7(4), 227-236 (1995).
39. Lin, H., Martelli, M.P. & Bierer, B.E. The involvement of the proto-oncogene p120 c-Cbl and ZAP-70 in CD2-mediated T cell activation. International Immunology 13(1), 13-22 (2001).
40. Gu, Y. et al. RhoH GTPase recruits and activates Zap70 required for T cell receptor signaling and thymocyte development. Nat Immunol 7(11), 1182-1190 (2006).
41. Wang, H. et al. ZAP-70: An Essential Kinase in T-cell Signaling. Cold Spring Harbor Perspectives in Biology 2(5) (2010).
42. Negishi, I. et al. Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature 376(6539), 435-438 (1995).
43. Soede, R.D.M., Wijnands, Y.M., Van Kouteren-Cobzaru, I. & Roos, E. ZAP-70 Tyrosine Kinase Is Required for LFA-1–dependent T Cell Migration. The Journal of Cell Biology 142(5), 1371-1379 (1998).
44. Dar, W.A. & Knechtle, S.J. CXCR3-mediated T-cell chemotaxis involves ZAP-70 and is regulated by signalling through the T-cell receptor. Immunology 120(4), 467-485 (2007).
45. Peacock, J.W. & Jirik, F.R. TCR Activation Inhibits Chemotaxis Toward Stromal Cell-Derived Factor-1: Evidence for Reciprocal Regulation Between CXCR4 and the TCR. The Journal of Immunology 162(1), 215-223 (1999).
46. García-Bernal, D. et al. Chemokine-Induced Zap70 Kinase-Mediated Dissociation of the Vav1-Talin Complex Activates [alpha]4[beta]1 Integrin for T Cell Adhesion. Immunity 31(6), 953-964 (2009).
47. Evans, R. et al. Integrins in immunity. Journal of Cell Science 122(2), 215-225 (2009).
48. Evans, R., Lellouch, A.C., Svensson, L., McDowall, A. & Hogg, N. The integrin LFA-1 signals through ZAP-70 to regulate expression of high-affinity LFA-1 on T lymphocytes. Blood 117(12), 3331-3342 (2011).
49. Sanchez-Madrid, F. & Angel del Pozo, M. Leukocyte polarization in cell migration and immune interactions. EMBO J 18(3), 501-511 (1999).
50. Ballestrem, C., Wehrle-Haller, B., Hinz, B. & Imhof, B.A. Actin-dependent Lamellipodia Formation and Microtubule-dependent Tail Retraction Control-directed Cell Migration. Mol. Biol. Cell 11(9), 2999-3012 (2000).
51. Schmidt, J.M., Zhang, J., Lee, H.-S., Stromer, M.H. & Robson, R.M. Interaction of Talin with Actin: Sensitive Modulation of Filament Crosslinking Activity. Archives of Biochemistry and Biophysics 366(1), 139-150 (1999).
52. Tadokoro, S. et al. Talin Binding to Integrin ß Tails: A Final Common Step in Integrin Activation. Science 302(5642), 103-106 (2003).