簡易檢索 / 詳目顯示

研究生: 陳國順
Chen, Kuo-Shun
論文名稱: 多階段製造系統之缺陷修補策略-以H公司為例
Defect Repair Strategy of Multi-Stage Manufacturing System - A Case Study of H Company
指導教授: 蔡青志
Tsai, Shing-Chih
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系碩士在職專班
Department of Industrial and Information Management (on the job class)
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 57
中文關鍵詞: 模擬最佳化多階段製造系統缺陷修補彩色濾光片
外文關鍵詞: Simulation Optimization, multi-stage manufacturing system, defect repair, color filter
相關次數: 點閱:113下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在多階段生產系統的檢驗策略研究中,對於在檢驗後發現有缺陷的半成品,如果後續作業流程為缺陷修補,通常假設修補率為固定值。在研究中比較少探討如何有效提升修補率的方法。本研究主要在探討如何在有限的修補資源條件下,取得最大的缺陷修補成功率。研究中會考慮工廠修補機台的數目為固定,且有修補產能需求的條件下,探討如何決策各修補站的單顆缺陷修補上限時間之最佳化組合,取得總體缺陷最大的修補成功率。期望研究結果能發揮修補機台的最大效率,滿足修補產能需求,並提供最佳的出貨品質。
    本研究以彩色濾光片(Color Filter)工廠為例,彩色濾光片的製造系統屬於多階段生產系統,且有多個的缺陷修補站。因工廠有最少產能滿足的需求,以現有的缺陷修補機台數量無法對生產中所有的缺陷進行修補,因此有些半成品的缺陷未修補就進行下一道製程,造成良率損失。因此本研究此問題探討如何提升修補機台效率,增加總體缺陷修補成功率。在現實中彩色濾光片中的缺陷修補完成所需的時間是不固定的,因此修補機台可能會花過多的修補時間在不易修補的缺陷上,造成總體缺陷修補效率不佳。所以研究中提出以設定單顆缺陷的修補上限時間方式,增加總體缺陷修補成功率。研究中以修補上限時間為決策變數,另外案例中會有多個修補站,所以會有多個決策變數的組合,這增加求解的困難性,此外在研究中還到考慮實際缺陷發生為隨機性及修補時間的不固定性,增加了問題的複雜度,這使問題不易用傳統的數學方式求解。根據文獻探討,當系統有隨機性且複雜時可利用系統模擬最佳化會減少求解的時間,且有不錯的求解品質。因此本研究方法會以系統模擬軟體Arena 建模,並以OptQuest最佳化來求解。使模擬結果能依實際狀況,調整參數,模擬演練並實際應用。

    TFT-LCD is an important technology industry in Taiwan. Because the strategy of continuous expansion of panel manufacturers, the panel market demand is gradually saturated. Therefore, the panel makers are now paying more attention to the development of high-standard and high-quality products, rather than capacity competitions. The thesis is to study the method of improving defect repair rate of TFT-LCD semi-finished products, color filters (CF). Under the current configuration of the existing repair machine, this paper studies how to increase the repair rate of the total defect by limiting the upper limit of defect repair time. CF is a multi-stage manufacturing system. There will be a repair station after each major processing station. The number of defects and the difficulty of defect repair in each process station are different, and the defects are generated as random. According to literature, when the problem is complex and the data is random, simulation methods can be used to find the optimal solution effectively. This study uses simulation methods as a tool, by OptQuest software gain optimization solution. It is expected to find the upper limit of repair time for each repair station and increase the repair rate of total defects. This study can provide managers with reference to repair decisions.

    摘要 i 目錄 vi 表目錄 viii 圖目錄 ix 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 3 1.4 研究假設與限制 4 1.5 研究大綱 4 第二章 文獻探討 6 2.1 多階段生產系統的檢驗策略 6 2.1.1 多階段生產系統的檢驗問題類型 6 2.1.2 多階段生產系統的檢驗研究模型 8 2.1.3 多階段生產系統的檢驗解決方法 9 2.2 系統模擬最佳化 10 2.3 小結 16 第三章 研究方法 17 3.1 問題敘述 17 3.1.1 彩色濾光片製程簡介 17 3.1.2 彩色濾光片製造流程 19 3.1.3 缺陷修補流程 20 3.1.4 問題定義 22 3.1.5 研究假設 23 3.2 數學模型架構 24 3.2.1 符號定義 24 3.2.2 數學模式 25 3.3 系統模擬之建構 29 3.2.1 系統模擬流程 29 3.2.1 系統模擬最佳化模式 32 第四章 模擬實驗與分析 34 4.1 模擬建構說明 34 4.1.1 問題確立與模擬規劃 34 4.1.2 Arena 模擬建構說明 37 4.1.3 模擬最佳化 44 4.2 模擬實驗的結果與分析 46 4.2.1 模擬最佳化結果 46 4.2.2 敏感度分析 48 4.3 小結 51 第五章 結論與未來研究方向 52 5.1 結論 52 5.2 未來研究與建議 53 參考文獻 55

    Ballou, D. P., & Pazer, H. L. (1982). The impact of inspector fallibility on the inspection policy in serial production systems. Management Science, 28(4), 387-399.

    Barad, M. (1990). A break-even quality level approach to location of inspection stations in a multi-stage production process. The International Journal of Production Research, 28(1), 29-45.

    Banks, J., (2005). Discrete-event system simulation, 4th ed. Upper Saddle River, NJ:Pearson Prentice Hall.

    Fu, M. C. (2002). Optimization for simulation: Theory vs. practice. Informs Journal on Computing, 14(3), 192-215.

    Glover, F., Kelly, J. P., & Laguna, M. (1996). New advances and applications of combining simulation and optimization. In Proceedings of the 28th conference on Winter simulation, 144-152

    Glover, F., Kelly, J. P., & Laguna, M. (1999). New advances for wedding optimization and simulation. In Proceedings of the 31th conference on Winter simulation, Phoenix, Arizona, 255-260.

    Kelton, W.D., Sadowski, R.P. & Swets, N.B., (2014). Simulation with Arena, 6th edition, McGraw-Hill Education, New York.

    Laguna, M., & Marti, R. (2003). The OptQuest callable library. In Optimization Software Class Libraries, 193-218.

    Lee, J., & Unnikrishnan, S. (1998). Planning quality inspection operations in multistage manufacturing systems with inspection errors. International Journal of Production Research, 36(1), 141-156.

    Liang, T. P., Turban, E., & Aronson, J. E. (2005). Decision Support Systems and Intelligent Systems. Yogyakarta: Penerbit Andi.

    Mandroli, S. S., Shrivastava, A. K., & Ding, Y. (2006). A survey of inspection strategy and sensor distribution studies in discrete-part manufacturing processes. IIE Transactions, 38(4), 309-328.

    Narahari, Y., & Khan, L. M. (1996). Modelling re-entrant manufacturing systems with inspection stations. Journal of Manufacturing Systems, 15(6), 367–378.

    Penn, M., & Raviv, T. (2007). Optimizing the quality control station configuration. Naval Research Logistics (NRL), 54(3), 301-314.

    Penn, M., & Raviv, T. (2008). A polynomial time algorithm for solving a quality control station configuration problem. Discrete Applied Mathematics, 156(4), 412-419.

    Rau, H., & Chu, Y. H. (2005). Inspection allocation planning with two types of workstation: WVD and WAD. The International Journal of Advanced Manufacturing Technology, 25(9), 947-953.

    Rebello, R., Agnetis, A., & Mirchandani, P. B. (1995). Specialized inspection problems in serial production systems. European Journal of Operational Research, 80(2), 277-296.

    Shetwan, A. G., Vitanov, V. I., & Tjahjono, B. (2011). Allocation of quality control stations in multistage manufacturing systems. Computers & Industrial Engineering, 60(4), 473-484.

    Shiau, Y. R. (2002). Inspection resource assignment in a multistage manufacturing system with an inspection error model. International Journal of Production Research, 40(8), 1787-1806.

    Shiau, Y. R., Lin, M. H., & Chuang, W. C. (2007). Concurrent process/inspection planning for a customized manufacturing system based on genetic algorithm. International Journal of Advanced Manufacturing Technology, 33.

    Shin, W. S., Hart, S. M., & Lee, H. F. (1995). Strategic allocation of inspection stations for a flow assembly line: a hybrid procedure. IIE transactions, 27(6), 707-715.

    Siemiatkowski, M., & Przybylski, W. (2006). Simulation studies of process flow with in-line part inspection in machining cells. Journal of Materials Processing Technology, 171(1), 27-34.

    Tannock, J., & Saelem, S. (2007). Manufacturing disruption costs due to quality loss. International Journal of Quality & Reliability Management, 24(3), 263-278.

    Valenzuela, J. F., Smith, J. S., & Evans, J. L. (2004). Allocating solder-paste printing inspection in high-volume electronics manufacturing. IIE Transactions, 36(12), 1171-1181.

    Yang, T., Lin, H. C., & Chen, M. L. (2006). Metamodeling approach in solving the machine parameters optimization problem using neural network and genetic algorithms: A case study. Robotics and Computer-Integrated Manufacturing, 22(4), 322-331.

    Yang, T., Kuo, Y., & Chang, I., (2004). Tabu-search simulation optimization approach for flow-shop scheduling with multiple processors-a case study. International Journal of Production Research, 42(19), 4015-4030.

    2017顯示器產業年鑑,工研院,http://www2.itis.org.tw/pubreport/pubreport_detail.aspx?rpno=49079245,檢索於2017年10月22日。

    蘇佳洛 (2011). 以模擬最佳化及反應曲面法求解醫學中心檢驗部醫療自動化系統之精實生產系統設計. 碩士論文,國立成功大學。

    下載圖示 校內:2022-08-31公開
    校外:2022-08-31公開
    QR CODE