| 研究生: |
陳琮元 Chen, Tsung-Yuan |
|---|---|
| 論文名稱: |
混營性微藻 Picochlorum sp. S1b 於水產養殖產業的運用 Application of a mixotrophic microalga Picocohlorum sp. S1b in aquaculture industry |
| 指導教授: |
楊惠郎
Yang, Huey-Lang 陳逸民 Chen, Yi-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 混營性 、微藻 、輪蟲 |
| 外文關鍵詞: | Mixotrophic, Microalgae, Rotifer |
| 相關次數: | 點閱:65 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
S1b是一株篩選自臺灣沿岸的海洋微藻。18S rDNA的親緣分析以及型態鑑定結果認定其為Picochlorum sp.。培養條件分析結果顯示,其在鹽度30~60 ‰、弱酸pH 5.0~6.4、以及添加有機碳、氮源的條件下生長速率較快。在20 L蒸餾水桶使用最佳生長條件進行培養時 (打氣量設訂在0.1 vvm、光照照度為3,000 Lux、光照時間為每日12小時、鹽度35 ‰、溫度27 °C、酵母萃出物及葡萄糖濃度分別為4.5及6.0 g L-1),其密度可於七天內由初始的0.05 g L-1快速增加到2.50 g L-1,具有量產的潛力。
在以S1b投餵極小型壺形輪蟲 (Brachionus sp.) 時,發現輪蟲的增殖率及帶卵率分別可達0.54 ± 0.05以及0.35 ± 0.10,與東港水試所的擬球藻分析結果0.58 ± 0.04以及0.27 ± 0.11並無顯著差異。進一步分析S1b的營養成分,發現其蛋白質高達乾重的55.3 %,因此有利於輪蟲的培養,然而在維生素B12的含量,S1b為0.62 ppm,低於文獻中最佳的輪蟲藻餌– Tetraselmis chuii的1.92 ppm,可能是影響其培養效果的原因。後續可進一步地研究能否透過添加維他命B12至培養基中,達到滋養S1b以改善其培養輪蟲的效果。
S1b, an algal strain isolated from the coastal area of Taiwan, was identified as Picochlorum sp. based on both phyogenetic ananlysis of 18S rDNA and morphological characterization. The cultivation studies showed it could grow well at salinity between 30 and 60 ‰, at pH ranging from 5.0 to 6.4, with supplements of organic carbon and nitrogen sources. When S1b was cultivated in a 20 L-carboy with 0.1 vvm aeration, 3,000 Lux illuminance supplied as 12 hours per day, and 10 L medium containing 4.5 g L-1 yeast extract and 6.0 g L-1 glucose prepared by seawater, it could grow from 0.05 g L-1 up to 2.50 g L-1 within a week, revealing the probability for producing the alga in industrial scale.
When S1b was fed to super small-sized strain of rotifer (Brachionus sp.), the egg ratio and reproductive rate could achieve 0.54 ± 0.05 and 0.35 ± 0.10 respectively, which were no less than 0.58 ± 0.04 and 0.27 ± 0.11, the egg ratio and reproductive rate obtaining by feeding rotifer with Nannochloropsis oculata. The results of nutrition analysis showed the S1b has very high protein content (55.3 % dry biomass) but low vitamin B12 content, which could be the reason why S1b is worse than Tetraselmis chuii for growing rotifers. More work is needed to see if the S1b enriched with vitamin B12 performed better for growing rotifers.
林榮芳,黃檀溪,2002,比較耐熱性小球藻異營生長之特性,師大學報: 數理與科技類,47,31-40。
陳明耀,1997,生物餌料培養,臺北縣新店市,水產出版社出版,2,43-164。
黃翔鵠,李長玲,劉楚吾,鄭蓮,何嘉,2002,兩種微藻改善蝦池環境增強凡納對蝦抗病力的研究,ACTA hydrobiologica sinica,4,湛江海洋大學水產學院。
黃翔鵠,李長玲,鄭蓮,劉楚吾,王瑞旋,2005,固定化微藻對蝦池弧菌數量動態的影響,水生生物學報,29,684-688。
楊玉婷,陳葦芋,陳政忻,2009,石斑魚產業概況及趨勢,農業生技產業季刊,19,24-29。
蘇惠美,蘇茂森,廖一久,1993,極小型輪蟲之篩選及其培養條件,臺灣水產研究期刊,台灣省水產試驗所東港分所,2,19-29。
Alava, V. R., Priolo, F.M.P., Arnaiz, M. and Toledo, J. D. 2004. Rimmer, M. A., McBride, S. and Williams, K. C. (ed.) Advance in grouper acquaculture. 53-54, Australian Centre for International Agricultural Research.
Amezaga, M. R. and Booth, I. R. 1999. Osmoprotection of Escherichia coli by peptone is mediated by the uptake and accumulation of free proline but not of proline-containing peptides. Applied and Environmental Microbiology, 65, 5272-5278.
Borowitzka, Michael A. 1997. Microalgae for aquaculture: Opportunities and constraints. Journal of Applied Phycology, 9, 393-401.
Brown, M. R., Mular, M., Miller, I., Farmer, C. and Trenerry, C. 1999. The vitamin content of microalgae used in aquaculture. Journal of Applied Phycology, 11, 247-255.
Christiansen, R. O., Lie, O.-J., Torrissen 1995. Growth and survival of Atlantic salmon, Salmo salar L., fed different dietary levels of astaxanthin. First-feeding fry. Aquaculture Nutrition, 1, 189-198.
Pauw, N. D. and Persoone, G. 1988. Micro-algae for aquaculture. Borowitzka, M. A. and Borowitzka L. J. (ed.). Cambridge, U.K.: Cambridge University.
Derelle, E., Ferraz, C., Rombauts, S., Rouze, P., Worden, A. Z., Robbens, S., Partensky, F., Degroeve, S., Echeynie, S., Cooke, R., Saeys, Y., Wuyts, J., Jabbari, K., Bowler, C., Panaud, O., Piegu, B., Ball, S. G., Ral, J.-P., Bouget, F.-Y., Piganeau, G., Baets, B. D., Picard, A., Delseny, M., Demaille, J., Peer, Y. V. D. and Moreau, H. 2006. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. PNAS, 103, 31, 11647-11652.
Domínguez, A., Ferreira, M., Coutinho, P., Fábregas, J. and Otero, A. 2005. Delivery of astaxanthin from Haematocuccus pluvialis to the aquaculture food chain. Aquaculture, 250, 424-430.
Droop, M. R. 1957. Auxotrophy and organic compounds in the nutrition of marine phytoplankton. Journal of General Microbiol, 16, 286-293.
Egli, T. 1991. On multiple-nutrient-limited growth of microorganisms, with special reference to dual limitation by carbon and nitrogen substrates. Antonie Van Leeuwenhoek, 60, 225-234.
Endo, H., Nakajima, K., Chino, R., Shirota, M. 1974. Growth characteristics and cellular components of Chlorella regularis, heterotrophic fast growing strain. Agricultural and Biological Chemistry, 38, 9-18.
Fushimi, H. 1988. Fiji-type rotifer as small-sized food organisms. 47, 10-15.
Gladue, R. and Maxey, J. 1994. Microalgal feeds for aquaculture. Journal of Applied Phycology, 6, 131-141.
Greenberg, Arnold 1998. Standard methods for the examination of water and wastewater, 20st ed., 4-53~4-55, 4-61~4-64
Hamre, K., Mollan, T. A., Sæle, Ø. and Erstad, B. 2008. Rotifers enriched with iodine and selenium increase survival in Atlantic cod (Gadus morhua) larvae. Aquaculture, 284, 190-195.
Heerklo, R. and Hlawa, S. 1995. Feeding biology of two brachionid rotifers: Brachionus quadridentatus and Brachionus plicatilis. Hydrobiologia, 313-314, 219-221.
Henley, W. J., Hironaka, J. L., Guillou, L., Buchheim, M. A., Buchheim, J. A., Fawlwy, M. W. and Fawley, K. P. 2004. Phylogenetic analysis of the ‘Nannochloris-like’ algae and diagnoses of Picochlorum oklahomensis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta). Phycologia, 43 (6), 641-652.
Hirayama, K. and Funamoto, H. 1983. Supplementary effect of several nutrients on nutritive deficiency of baker's yeast for population growth of the rotifer. Bulletin of Japanese society of scientific fisheries, 49, 505-510.
Hirayama, K. 1987. A consideration of why mass culture of the rotifer Brachionus plicatilis with baker's yeast is unstable. Hydrobiologia, 147, 269-270.
Hirayama, K. 1990. A physiological approach to problems of mass culture of the rotifer., 73-79.
Hiroshi, K., Riza, O-A, Ohno, A. and Taki, Y. 1997. Why is grouper larval rearing difficult?: an approach from the development of the feeding apparatus in early stage larvae of the grouper, Epinephelus coioides. Ichthyological Research, 44, 267-274.
Kunckey, R. M., Rumengan, I. and Wullur, S. 2004. SS-strain rotifer culture for finfish larvae with small mouth gape. Rimmer, M. A. , McBride, S. and Williams, K. C. (ed.) Advances in grouper acquaculture, 21-25., Australian Centre for International Agricultural Research.
Langdon, C., Clack, B. and Önal, U. 2007. Complex microparticles for delivery of low-molecular weight, water-soluble nutrients and pharmaceuticals to marine fish larvae. Aquaculture, 268, 143-148.
Lavens, S. (ed.) 1996. Manual on the production and use of live food for aquaculture. FAO Fisheries Technical Paper, 361, 1-78.
Lie, O., Haaland, H., Hemre, G. I., Maage, A., Lied, E., Rosenlund, G., Sandnes, K. and Olsen, Y. 1997. Nutritional composition of rotifers following a change in diet from yeast and emulsified oil to microalgae. Aquaculture International, 5, 427-438.
Lin, L-P and Chen, T. 1994. Factors affecting the mixotrophic maximum growth of Chlorella pyrenoidosa. Journal of the Chinese agricultural chemical society, 32, 91-102.
Maruyama, I., Nakao, T., Shigeno, I., Ando, Y. and Hirayama, K. 1997. Application of unicellular algae Chlorella vulgaris for the mass-culture of marine rotifer Brachionus. Hydrobiologia, 358, 133-138.
Ranga, R., Sarada, A. R., Baskaran, V. and Ravishankar, G. A. 2009. Identification of carotenoids from green alga Haematococcus pluvialis by HPLC and LC-MS (APCI) and their antioxidant properties. Journal of Microbiol Biotechnology, 19, 1333-41.
Reitan, K. I., Rainuzzo, J. R., Øie, G. and Olsen, Y. 1993. Nutritional effects of algal addition in first-feeding of turbot (Scophthalmus maximus L.) larvae. Aquaculture, 118, 257-275.
Scott, J. M. 1981. The vitamin B12 requirement of the marine rotifer Brachionus plicatilis. Journal of the Marine Biological Association of the UK, 61, 983-994.
Shigesada, N. and Okubo, A. 1981. Analysis of the self-shading effect on algal vertical distribution in natural waters. Journal of Mathematical Biology, 12, 311-326.
Skliris, G. P. and Richards, R. H. 1998. Assessment of the susceptibility of the brine shrimp Artemia salina and rotifer Brachionus plicatilis to experimental nodavirus infections. Aquaculture, 169, 133-141.
Snell, T. W., Childress, M. J., Boyer, E. M. and Hoff, F. H. 1987. Assessing the status of rotifer mass cultures. Journal of the World Aquaculture Society, 18, 270-277.
Su, H.-M., Su, S.-M. and Liao, I.-C. 1997. Preliminary results of providing various combinations of live foods to grouper (Epinephelus coioides) larvae. Hydrobiologia, 358, 301-304.
Takeuchi, T. 2001. A review of feed development for early life stages of marine finfish in Japan. Aquaculture, 200, 203-222.
Thompson, P. A., Harrison, P. J. and Whyte, J. N. C. 1990. Influence of irradiance on the fatty acid composition of phytoplankton. Journal of Phycology, 26, 278-288.
Wiessner, W. 1979. Photoassimilation of organic compounds. Gibbs, M. and Latzko, E. (ed.) Encyclopedia of Plant Physiology, Berlin: Springer.
Wade, N., Goulter, K. C., Wilson, K. J., Hall, M. R. and Degnan, B. M. 2005. Esterified astaxanthin levels in lobster epithelia correlate with shell colour intensity: Potential role in crustacean shell colour formation. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 141, 307-313.
Walne PR 1970. Studies of the food value of nineteen genera of algae to juvenile bivalves of the genera Ostrea, Crassostrea, Mercenaria, and Mytilis. Fishery Investment, 26, 1-62.
Xiong, W., Li, X., Xiang, J. and Wu, Q. 2008. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Applied Microbiology and Biotechnology, 78, 29-36.
Yang, H.-L., Lu, C.-K., Chen, S.-F., Chen, Y.-M. and Chen, Y.-M. 2010. Isolation and characterization of Taiwanese heterotrophic microalgae: screening of strains for docosahexaenoic acid (DHA) production. Marine Biotechnology, 12, 173-185.
Yokohoonji, Kamiichi, Nakaniikawa, Toyama 1998. Spectrophotometric and HPLC analysis method for determining astaxanthin content in AstaREAL® -P2AF. 1-18.
Zinn, M., Witholt, B. and Egli, T. 2004. Dual nutrient limited growth: models, experimental observations, and applications. Journal of Biotechnology, 113, 263-279.