簡易檢索 / 詳目顯示

研究生: 何俞慧
He, Yu-Hui
論文名稱: 改變電洞傳輸層材料與最佳化甲基氨基溴化鉛鈣鈦礦發光層以提高發光二極體之效率
Achievement of High Efficient Light-Emitting Diodes with Changing the Hole Transport Layer and Optimizing the MAPbBr3 Emitting Layer
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 64
中文關鍵詞: 氧化亞錫氧化鎳鈣鈦礦發光二極體
外文關鍵詞: SnO, NiOx, Pervoskite, Light-emitting diode
相關次數: 點閱:78下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈣鈦礦在十年間於太陽能電池界中大放異彩,光電轉換效率已達22 %以上,近年於發光二極體中更有爆炸性的發展,用短短兩年時間已達有機發光二極體和量子點發光二極體發展十年的效能,外部量子效率已從1%提升到8%以上。本研究提出兩種電洞傳輸層材料使用於甲基氨基溴化鉛鈣鈦礦發光二極體中,其一是擁有優異穿透率和電洞濃度的p型半導體材料氧化亞錫,最重要的是其最高占據分子軌域(HOMO)與鈣鈦礦材料相近,可藉由控制製程時的氧通量與不同溫度的後退火處理來調整薄膜電洞濃度,製作出來的鈣鈦礦發光二極體亮度可達76,912 cd/m2,並擁有4.5 cd/A的電流效率。另一種材料為常用於有機發光二極體中的電洞傳輸層材料氧化鎳,在相同的旋塗法下,提升電流效率至6.06 cd/A。接著進一步提出改善發光層品質之方法,利用三明治結構的旋塗手法,讓反溶劑能完整包覆鈣鈦礦前驅物,使其快速成核,將晶粒成功縮小十倍以上,電流效率提升至10.35 cd/A。此外,若進一步嘗試製作雙層薄膜結構來修補針孔問題,從結果來看效果並不理想。於過去文獻中,還沒有使用氧化亞錫於發光二極體中的電洞傳輸層材料,本論文是第一個提出,而對於解決鈣鈦礦薄膜品質問題,都是使用添加化學藥品或需要特別的設備來完成,本研究只單純變換旋塗手法,即可達到相同效果。

    Perovskite has yielded unusually brilliant results in the field of solar cells in recent 10 years, and its photovoltaic conversion efficiency has increased to 22 %. The external quantum efficiency (EQE) of perovskite light-emitting diodes (PeLED) has rapidly progressed from under 1% to over 8% in less than two years, and the current efficiency (CE) and luminance have approached the capability of quantum dots light-emitting diodes (QLED) and organic light-emitting diodes (OLED) which have developed for a decade. This research presents two kinds of materials which are used in the MAPbBr3 perovskite light-emitting diode for hole transport layer. One of them is SnO which has high transmittance and hole concentration. The most important is that its highest occupied molecular orbital (HOMO) level is about 5.8 eV which is very close to the MABr3. By adjusting different oxygen partial pressure (OPP) and annealing temperature, one can obtain different concentration of SnO. The luminance and current efficiency are 76,912 cd/m2 and 4.5 cd/A, respectively. Another material is NiOx which is used in OLED for transport layer commonly. The current efficiency is increased to 6.06 cd/A. Then the quality of the emission layer was further improved. Using the sandwich method, the antisolvent can completely sandwich the perovskite precursor and induce fast nucleation, so that the crystal grains are successfully reduced to 1/10 in size and the current efficiency is improved to be 10.35 cd/A. In addition, in order to repair the pinhole problem, the multilayer structure of emission layer was also developed. But the results were not ideal. In short, SnO was used as the material of hole transport layer for LED first time in this work. On the other hand, all of other studies always incorporate chemicals in the perovskite layer to improve its performance, but this work can achieve the same achievement by changing the spin coating method simply.

    Abstract (Chinese) I Abstract II Acknowledgement IV Contents VI Table Captions IX Figure Captions X Chapter 1 Introduction 1 1.1 The progress of light-emitting diodes 1 1.2 Perovskite materials 3 1.2.1 History and crystal structure of perovskite 3 1.2.2 Characteristics of hybrid halide perovskite in LED 5 1.3 Advantages and applications of hybrid halide PeLED 9 1.4 Motivation 10 Chapter 2 Experiment Overview 15 2.1 Materials of each layer 15 2.1.1 Anode 15 2.1.2 Hole transport layer 15 2.1.3 Emission layer 16 2.1.4 Electron transport layer 18 2.1.5 Cathode 19 2.2 Fabrication 21 2.2.1 Device 21 2.2.2 ITO pattern 22 2.3 Measurement of LED characteristics 23 Chapter 3 SnO as Hole Transport Layer 25 3.1 Experiment Process 25 3.1.1 Material preparation 25 3.1.2 Device fabrication 26 3.2 Result and discussion 28 3.3 Summary 33 Chapter 4 NiOx as Hole Transport Layer 35 4.1 Experiment Process 35 4.1.1 Material preparation 35 4.1.2 Device fabrication 36 4.2 Two-step spin coating method 37 4.2.1 Result and discussion 37 4.3 Sandwich method 41 4.3.1 Result and discussion 41 4.3.2 Summary 42 4.4 Multilayer method 49 4.4.1 Result and discussion 50 4.4.2 Summary 50 Chapter 5 Conclusion and Prospects 57 5.1 Conclusion 57 5.2 Prospects 60 Reference 61

    [1] A., V.S., B.P. P., Y. Natalia, L. Mingjie, S.T. Chien, M. Nripan, and M.S. G., Perovskite Materials for Light‐Emitting Diodes and Lasers. Advanced Materials. 28(32): p. 6804-6834, 2016.
    [2] Protesescu, L., S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, and M.V. Kovalenko, Nanocrystals of Cesium Lead Halide Perovskites (CsPbX(3), X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 15(6): p. 3692-3696, 2015.
    [3] Sichert, J.A., Y. Tong, N. Mutz, M. Vollmer, S. Fischer, K.Z. Milowska, R. García Cortadella, B. Nickel, C. Cardenas-Daw, J.K. Stolarczyk, A.S. Urban, and J. Feldmann, Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets. Nano Letters. 15(10): p. 6521-6527, 2015.
    [4] Pathak, S., N. Sakai, F. Wisnivesky Rocca Rivarola, S.D. Stranks, J. Liu, G.E. Eperon, C. Ducati, K. Wojciechowski, J.T. Griffiths, A.A. Haghighirad, A. Pellaroque, R.H. Friend, and H.J. Snaith, Perovskite Crystals for Tunable White Light Emission. Chemistry of Materials. 27(23): p. 8066-8075, 2015.
    [5] Yuan, Z., Y. Shu, Y. Xin, and B. Ma, Highly luminescent nanoscale quasi-2D layered lead bromide perovskites with tunable emissions. Chemical Communications. 52(20): p. 3887-3890, 2016.
    [6] Jang, D.M., D.H. Kim, K. Park, J. Park, J.W. Lee, and J.K. Song, Ultrasound synthesis of lead halide perovskite nanocrystals. Journal of Materials Chemistry C. 4(45): p. 10625-10629, 2016.
    [7] Kojima, A., K. Teshima, Y. Shirai, and T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society. 131(17): p. 6050-6051, 2009.
    [8] Mitzi, D.B., M.T. Prikas, and K. Chondroudis, Thin Film Deposition of Organic−Inorganic Hybrid Materials Using a Single Source Thermal Ablation Technique. Chemistry of Materials. 11(3): p. 542-544, 1999.
    [9] Tan, Z.K., R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L.M. Pazos, D. Credgington, F. Hanusch, T. Bein, H.J. Snaith, and R.H. Friend, Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol. 9(9): p. 687-692, 2014.
    [10] Cho, H., S.H. Jeong, M.H. Park, Y.H. Kim, C. Wolf, C.L. Lee, J.H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S.H. Im, R.H. Friend, and T.W. Lee, Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science. 350(6265): p. 1222-1225, 2015.
    [11] Jianhai, L., X. Leimeng, W. Tao, S. Jizhong, C. Jiawei, X. Jie, D. Yuhui, C. Bo, S. Qingsong, H. Boning, and Z. Haibo, 50‐Fold EQE Improvement up to 6.27% of Solution‐Processed All‐Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control. Advanced Materials. 29(5): p. 1603885, 2017.
    [12] Yuan, M., L.N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E.M. Beauregard, P. Kanjanaboos, Z. Lu, D.H. Kim, and E.H. Sargent, Perovskite energy funnels for efficient light-emitting diodes. Nat Nanotechnol. 11(10): p. 872-877, 2016.
    [13] Xiao, Z., R.A. Kerner, L. Zhao, N.L. Tran, K.M. Lee, T.-W. Koh, G.D. Scholes, and B.P. Rand, Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nature Photonics. 11(2): p. 108-115, 2017.
    [14] Yu, J.C., D.B. Kim, E.D. Jung, B.R. Lee, and M.H. Song, High-performance perovskite light-emitting diodes via morphological control of perovskite films. Nanoscale. 8(13): p. 7036-7042, 2016.
    [15] Li, G., Z.K. Tan, D. Di, M.L. Lai, L. Jiang, J.H. Lim, R.H. Friend, and N.C. Greenham, Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. Nano Lett. 15(4): p. 2640-2644, 2015.
    [16] Junqiang, L., B.S.G. R., S. Xin, and Y. Zhibin, Single‐Layer Light‐Emitting Diodes Using Organometal Halide Perovskite/Poly(ethylene oxide) Composite Thin Films. Advanced Materials. 27(35): p. 5196-5202, 2015.
    [17] Kim, H., C.M. Gilmore, A. Piqué, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafafi, and D.B. Chrisey, Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. Journal of Applied Physics. 86(11): p. 6451-6461, 1999.
    [18] Nadja, S., R. Martin, D. Martina, and R. Andreas, Tape Casting of ITO Green Tapes for Flexible Electroluminescent Lamps. Journal of the American Ceramic Society. 95(2): p. 684-689, 2012.
    [19] Du, J., X.-l. Chen, C.-c. Liu, J. Ni, G.-f. Hou, Y. Zhao, and X.-d. Zhang, Highly transparent and conductive indium tin oxide thin films for solar cells grown by reactive thermal evaporation at low temperature. Applied Physics A. 117(2): p. 815-822, 2014.
    [20] Liang, L.Y., Z.M. Liu, H.T. Cao, and X.Q. Pan, Microstructural, Optical, and Electrical Properties of SnO Thin Films Prepared on Quartz via a Two-Step Method. ACS Applied Materials & Interfaces. 2(4): p. 1060-1065, 2010.
    [21] Ogo, Y., H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, p-channel thin-film transistor using p-type oxide semiconductor, SnO. Applied Physics Letters. 93(3): p. 032113, 2008.
    [22] Yabuta, H., N. Kaji, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, Sputtering formation of p-type SnO thin-film transistors on glass toward oxide complimentary circuits. Applied Physics Letters. 97(7): p. 072111, 2010.
    [23] Du, X., Y. Du, and S.M. George, In situ examination of tin oxide atomic layer deposition using quartz crystal microbalance and Fourier transform infrared techniques. Journal of Vacuum Science & Technology A. 23(4): p. 581-588, 2005.
    [24] Okamura, K., B. Nasr, R.A. Brand, and H. Hahn, Solution-processed oxide semiconductor SnO in p-channel thin-film transistors. Journal of Materials Chemistry. 22(11): p. 4607, 2012.
    [25] Caraveo-Frescas, J.A., P.K. Nayak, H.A. Al-Jawhari, D.B. Granato, U. Schwingenschlögl, and H.N. Alshareef, Record Mobility in Transparent p-Type Tin Monoxide Films and Devices by Phase Engineering. ACS Nano. 7(6): p. 5160-5167, 2013.
    [26] Gupta, R., K. Ghosh, and P. Kahol, Fabrication and characterization of NiO/ZnO p–n junctions by pulsed laser deposition. Vol. 41. 2009. 617-620.
    [27] Im, J.-H., H.-S. Kim, and N.-G. Park, Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3. APL Materials. 2(8): p. 081510, 2014.
    [28] Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature. 501: p. 395, 2013.
    [29] Ono, L.K., S. Wang, Y. Kato, S.R. Raga, and Y. Qi, Fabrication of semi-transparent perovskite films with centimeter-scale superior uniformity by the hybrid deposition method. Energy & Environmental Science. 7(12): p. 3989-3993, 2014.
    [30] Tung, H.S., L. Xinfeng, Z. Qing, G. David, S.T. Chien, and X. Qihua, Synthesis of Organic–Inorganic Lead Halide Perovskite Nanoplatelets: Towards High‐Performance Perovskite Solar Cells and Optoelectronic Devices. Advanced Optical Materials. 2(9): p. 838-844, 2014.
    [31] Shi, D., V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P.A. Dowben, O.F. Mohammed, E.H. Sargent, and O.M. Bakr, Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science. 347(6221): p. 519-522, 2015.
    [32] Haskal, E.I., A. Curioni, P.F. Seidler, and W. Andreoni, Lithium–aluminum contacts for organic light-emitting devices. Applied Physics Letters. 71(9): p. 1151-1153, 1997.
    [33] Kido, J. and T. Matsumoto, Bright organic electroluminescent devices having a metal-doped electron-injecting layer. Applied Physics Letters. 73(20): p. 2866-2868, 1998.
    [34] Kim, Y.E., H. Park, and J.J. Kim, Enhanced quantum efficiency in polymer electroluminescence devices by inserting a tunneling barrier formed by Langmuir–Blodgett films. Applied Physics Letters. 69(5): p. 599-601, 1996.
    [35] Hung, L.S., C.W. Tang, and M.G. Mason, Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Applied Physics Letters. 70(2): p. 152-154, 1997.
    [36] Wakimoto, T., Y. Fukuda, K. Nagayama, A. Yokoi, H. Nakada, and M. Tsuchida, Organic EL cells using alkaline metal compounds as electron injection materials. IEEE Transactions on Electron Devices. 44(8): p. 1245-1248, 1997.
    [37] Cao, Y., G. Yu, I.D. Parker, and A.J. Heeger, Ultrathin layer alkaline earth metals as stable electron-injecting electrodes for polymer light emitting diodes. Journal of Applied Physics. 88(6): p. 3618-3623, 2000.
    [38] Fujikawa, H., T. Mori, K. Noda, M. Ishii, S. Tokito, and Y. Taga, Organic electroluminescent devices using alkaline-earth fluorides as an electron injection layer. Journal of Luminescence. 87-89: p. 1177-1179, 2000.
    [39] Ganzorig, C., K. Suga, and M. Fujihira, Alkali metal acetates as effective electron injection layers for organic electroluminescent devices. Materials Science and Engineering: B. 85(2): p. 140-143, 2001.
    [40] Kim, D.B., J.C. Yu, Y.S. Nam, D.W. Kim, E.D. Jung, S.Y. Lee, S. Lee, J.H. Park, A.-Y. Lee, B.R. Lee, D. Di Nuzzo, R.H. Friend, and M.H. Song, Improved performance of perovskite light-emitting diodes using a PEDOT:PSS and MoO3 composite layer. Journal of Materials Chemistry C. 4(35): p. 8161-8165, 2016.
    [41] Liang, J., Y. Zhang, X. Guo, Z. Gan, J. Lin, Y. Fan, and X. Liu, Efficient perovskite light-emitting diodes by film annealing temperature control. RSC Advances. 6(75): p. 71070-71075, 2016.
    [42] Chih, Y.K., J.C. Wang, R.T. Yang, C.C. Liu, Y.C. Chang, Y.S. Fu, W.C. Lai, P. Chen, T.C. Wen, Y.C. Huang, C.S. Tsao, and T.F. Guo, NiOx Electrode Interlayer and CH3 NH2 /CH3 NH3 PbBr3 Interface Treatment to Markedly Advance Hybrid Perovskite-Based Light-Emitting Diodes. Adv Mater. 28(39): p. 8687-8694, 2016.
    [43] Yu, J.C., D.W. Kim, D.B. Kim, E.D. Jung, K.S. Lee, S. Lee, D.D. Nuzzo, J.S. Kim, and M.H. Song, Effect of the solvent used for fabrication of perovskite films by solvent dropping on performance of perovskite light-emitting diodes. Nanoscale. 9(5): p. 2088-2094, 2017.

    無法下載圖示 校內:2023-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE