| 研究生: |
蔡明峰 Tsai, Ming-Fong |
|---|---|
| 論文名稱: |
無線網路影像傳輸上之進階前向糾錯機制 Forward-Looking Forward Error Correction and its Applications on Video Streaming over Wireless Networks |
| 指導教授: |
謝錫堃
Shieh, Ce-Kuen |
| 共同指導教授: |
黃文祥
Hwang, Wen-Shyang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 影像串流 、前向糾錯 |
| 外文關鍵詞: | Video Streaming, Forward Error Correction |
| 相關次數: | 點閱:101 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
影像串流於無線網路上傳輸的時候,經常會遭受到嚴重的封包遺失進而導致使用者觀看影像串流品質的下降。前向糾錯機制〈Forward Error Correction〉是一種經常在無線網路上傳輸影像串流時所使用的傳輸封包錯誤回復機制。然而,在無線網路的傳輸環境上其封包遺失的型式多半是以連續性封包遺失居多。因為封包遺失的型式是連續性封包遺失,同時其連續封包遺失的數量大於所加入的前向糾錯冗餘封包數量時,前向糾錯機制的錯誤封包回復效能將會大幅地下降。因此,此篇論文提出於無線網路影像傳輸上之進階前向糾錯機制〈Forward-Looking Forward Error Correction Mechanism for Video Streaming over Wireless Networks〉,其被簡稱為FL-FEC機制。我們所提出之FL-FEC機制的錯誤封包回復範圍不僅僅只有在自己所屬的FEC區塊,更包含了可以幫助自己前面的FEC區塊來進行錯誤封包回復的動作與回復能力。然而,為了避免連續性封包遺失對FEC機制所造成錯誤封包回復效能下降,此論文之FL-FEC機制為挑選前一個FEC區塊之不連續的封包進行保護的動作與回復能力。因此FL-FEC機制能夠有效地將連續性封包遺失型式轉換成平均性封包遺失型式。此外,使用FEC機制需要加入冗餘封包數量來保護可能遺失的原始資料封包,為了有效率地降低FEC機制需要加入的錯誤回復負擔用以加入適當的冗餘封包數量,此FL-FEC機制利用數學模型來選擇最適當的冗餘封包數量。再者其FL-FEC機制能夠利用適當的傳輸容忍時間延遲來使用重送技術進而降低冗餘封包數量。因此從我們論文中所獲得到的實驗結果可以知道,論文之FL-FEC機制可以得到較高的錯誤回復效能、較低的錯誤回復負擔、較高的峰值訊噪比與較高可解還原畫面比相較於其他的相關文獻研究。
Video streaming over wireless network poses a great challenge because the high packet error rate usually decreases the quality of video streaming. Forward Error Correction (FEC) mechanism is generally used to protect the video quality. However, the recovery performance of the FEC mechanism decreases when burst packet loss is larger than the added FEC redundant packets. In this thesis, the Forward-Looking Forward Error Correction (FL-FEC) mechanism is proposed to recover lost packets for video streaming over wireless networks. The FL-FEC mechanism recovers not only the lost packet from its FEC block but also the previous FEC block from the recovered packet, repeating the recovery procedure until recovering the first FEC block. If the play-out buffer at the receiver is large, the FL-FEC mechanism can execute a chain of recovery procedures to ultimately recover all lost packets without any negative impact on application performance. The FL-FEC mechanism selects non-continuous source packets in previous FEC blocks to generate FEC redundancy with the FEC block. Hence, the FL-FEC mechanism can significantly disperse burst packet loss into different FEC blocks. Moreover, FL-FEC finds the appropriate threshold to retransmit lost data packets in playable time and also reduces error recovery overhead. The FL-FEC mechanism uses an analytical model to decide the number of FEC redundant packets in order to obtain the minimum recovery overhead. The FL-FEC mechanism is tested to show the benefits of high recovery performance and low recovery overhead in improving the peak signal to noise ratio and the decodable frame rate of video streaming over wireless networks.
[1] C. Chen, C. Lin and Y. Chen, Cross-layer packet retry limit adaptation for video transport over wireless LANs. IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, no. 11, pp. 1448-1461, 2010.
[2] P. Barsocchi and G. Oligeri, Quality of experience in multicast hybrid networks: avoiding bandwidth wasting with a double-stage FEC scheme. IET Communications, vol. 4, no. 13, pp. 1573-1579, 2010.
[3] K. Kang, C. Kim and K. Park, A hybrid architecture for delay analysis of interleaved FEC on mobile platforms. IEEE Transactions on Vehicular Technology, vol. 59, no. 4, pp. 2087-2092, 2010.
[4] Y. Shan, S. Yi, S. Kalyanaraman and J. Woods, Adaptive two-stage FEC scheme for scalable video transmission over wireless networks. Signal Processing-Image Communication, vol. 24, no. 9, pp. 718-729, 2009.
[5] M. Tsai, C. Shieh, W. Hwang and D. Deng, An adaptive multi-hop forward error correction protection scheme for enhancing the quality of service of video streaming transmission over wireless mesh networks. International Journal of Communication Systems, vol. 22, no. 10, pp. 1297-1318, 2009.
[6] Q. Hao, F. Hu and Y. Xiao, Multiple human tracking and identification with wireless distributed pyroelectric sensor systems. IEEE Systems Journal, vol. 3, no. 4, pp. 428-439, 2009.
[7] S. Muraoka, H. Masuyama, S. Kasahara and Y. Takahashi, FEC recovery performance for video streaming services over wired-wireless networks. Performance Evaluation, vol. 66, no. 6, pp. 327-342, 2009.
[8] A. Nafaa, T. Taleb and L. Murphy, Forward error correction strategies for media streaming over wireless networks. IEEE Communications Magazine, vol. 46, no. 1, pp. 72-79, 2008.
[9] A. Argyriou, Cross-layer error control for multimedia streaming in wireless/wireline packet networks. IEEE Transactions on Multimedia, vol. 10, no. 6, pp. 1121-1127, 2008.
[10] D. Ko, S. Han, H. Cha and R. Ha, A traffic control system for IEEE 802.11 networks based on available bandwidth estimation. Wireless Communications and Mobile Computing, vol. 8, no. 4, pp. 407-419, 2008.
[11] C. Lin, C. Shieh, N. Chilamkurti, C. Ke and W. Hwang, A RED-FEC mechanism for video transmission over WLANs. IEEE Transactions on Broadcasting, vol. 54, no. 3, pp. 517-524, 2008.
[12] V. Gandikota, B. Tamma and C. Murthy, Adaptive FEC-based packet loss resilience scheme for supporting voice communication over ad hoc wireless networks. IEEE Transactions on Mobile Computing, vol. 7, no. 10, pp. 1184-1199, 2008.
[13] J. Choi and J. Shin, Cross-layer error-control with low-overhead ARQ for H.264 video transmission over wireless LANs. Computer Communications, vol. 30, no. 7, pp. 1476-1486, 2007.
[14] S. Moon and J. Kim, Network-adaptive selection of transport error control (NASTE) for video streaming over WLAN. IEEE Transactions on Consumer Electronics, vol. 53, no. 4, pp. 1440-1448, 2007.
[15] S. Kang and D. Loguinov, Modeling best-effort and FEC streaming of scalable video in lossy network channels. IEEE/ACM Transactions on Networking, vol. 15, no. 1, pp. 187-200, 2007.
[16] S. Choi, Y. Choi and I. Lee, IEEE 802.11 MAC-level FEC scheme with retransmission combining. IEEE Transactions on Wireless Communications, vol. 5, no. 1, pp. 203-211, 2006.
[17] Y. Zhou and J. Wang, Optimum subpacket transmission for hybrid ARQ systems. IEEE Transactions on Communications, vol. 54, no. 5, pp. 934-942, 2006.
[18] C. Lee, C. Yang and Y. Su, Adaptive UEP and packet size assignment for scalable video transmission over burst-error channels. EURASIP Journal on Applied Signal Processing, vol. 2006, no. 1, 2006.
[19] T. Tunali and K. Anar, Adaptive available bandwidth estimation for internet video streaming. Signal Processing-Image Communication, vol. 21, no. 3, pp. 217-234, 2006.
[20] H. Zhai, X. Chen and Y. Fang, How well can the IEEE 802.11 wireless LAN support quality of service? IEEE Transactions on Wireless Communications, vol. 4, no. 6, pp. 3084-3094, 2005.
[21] J. Neckebroek, H. Bruneel and M. Moeneclaey, Application layer ARQ for protecting video packets over an indoor MIMO-OFDM link with correlated block fading. IEEE Journal on Selected Areas in Communications, vol. 28, no. 3, pp. 467-475, 2010.
[22] R. Cohen, G. Grebla and L. Katzir, Cross-layer hybrid FEC/ARQ reliable multicast with adaptive modulation and coding in broadband wireless networks. IEEE/ACM Transactions on Networking, vol. 18, no. 6, pp. 1908-1920, 2010.
[23] M. Tsai, C. Shieh, C. Ke and D. Deng, Sub-packet forward error correction mechanism for video streaming over wireless networks. Multimedia Tools and Applications, vol. 47, no. 1, pp. 49-69, 2010.
[24] Y. Wang, C. Lin, M. Tsai and Ce-Kuen Shieh, Cross-layer unequal error protection mechanism with an interleaved strategy for video streaming over wireless networks. IEEE Wireless Communications and Networking Conference, pp. 1-6, 2010.
[25] H. Luo, A. Argyriou, D. Wu and S. Ci, Joint source coding and network-supported distributed error control for video streaming in wireless multihop networks. IEEE Transactions on Multimedia, vol. 11, no. 7, pp. 1362-1372, 2009.
[26] M. Lu, P. Steenkiste and T. Chen, CHARQ: Cooperative Hybrid ARQ for wireless video streaming. IEEE International Conference on Multimedia and Expo, pp. 750-753, 2009.
[27] Y. Chang, S. Lee and R. Komiya, A fast forward error correction allocation algorithm for unequal error protection of video transmission over wireless channels. IEEE Transactions on Consumer Electronics, vol. 54, no. 3, pp. 1066-1073, 2008.
[28] A. Morell, G. Seco-Granados and M. Vazquez-Castro, Cross-layer design of dynamic bandwidth allocation in DVB-RCS. IEEE Systems Journal, vol. 2, no. 1, pp. 62-73, 2008.
[29] A. Moid and A. Fapojuwo, Heuristics for jointly optimizing FEC and ARQ for video streaming over IEEE 802.11 WLAN. IEEE Wireless Communications and Networking Conference, pp. 2141-2146, 2008.
[30] M. Tsai, C. Ke, T. Wu, C. Shieh and W. Hwang, Burst-aware adaptive forward error correction in video streaming over wireless networks. IEEE International Conference on High Performance Computing and Communications, pp. 625-628, 2008.
[31] E. Park, S. Han, H. Kim and K. Son, Cross-correlated FEC scheme for multimedia streaming over wireless LAN. IEEE International Conference on Advanced Information Networking and Applications, pp. 217-222, 2008.
[32] A. Moid and A. Fapojuwo, Performance evaluation of joint FEC and ARQ optimization heuristic algorithms under Gilbert-Elliot wireless channel. IEEE Vehicular Technology Conference, pp. 1751-1755, 2008.
[33] I. Bajic, Efficient cross-layer error control for wireless video multicast. IEEE Transactions on Broadcasting, vol. 53, no. 1, pp. 276-285, 2007.
[34] A. Basalamah and T. Sato, A comparison of packet-level and byte-level reliable FEC multicast protocols for WLANs. IEEE Global Telecommunications Conference, pp. 4702-4707, 2007.
[35] T. Jokela and E. Lehtonen, Reed-Solomon decoding algorithms and their complexities at the DVB-H link-layer. IEEE International Symposium on Wireless Communication Systems, pp. 752-756, 2007.
[36] S. Karande and H. Radha, Hybrid erasure-error protocols for wireless video. IEEE Transactions on Multimedia, vol. 8, no. 2, pp. 307-319, 2007.
[37] H. Liu, M. Wu, D. Li, S. Mathur, K. Ramaswamy, L. Han and D. Raychaudhuri, A staggered FEC system for seamless handoff in wireless LANs: implementation experience and experimental study. IEEE International Symposium on Multimedia, pp. 283-290, 2007.
[38] J. Sarkar, S. Sengupta, M. Chatterjee and S. Ganguly, Differential FEC and ARQ for radio link protocols. IEEE Transactions on Computers, vol. 55, no. 11, pp. 1458-1472, 2006.
[39] J. Choi and J. Shin, A novel content-aware interleaving for wireless video transmission. Computer Communications, vol. 29, no. 13-14, pp. 2634-2645, 2006.
[40] L. Galluccio, G. Morabito and S. Palazzo, Achieving TCP optimization over wireless links through joint FEC and power management: an analytical study. IEEE Transactions on Wireless Communications, vol. 5, no. 10, pp. 2956-2966, 2006.
[41] Q. Qu, Y. Pei and J. Modestino, An adaptive motion-based unequal error protection approach for real-time video transport over wireless IP networks. IEEE Transactions on Multimedia, vol. 8, no. 5, pp. 1033-1044, 2006.
[42] G. Zhaohui, Y. Nishikawa, R. Omaki, T. Onoye, I. Shirakawa, A low-complexity FEC assignment scheme for motion JPEG2000 over wireless network. IEEE Transactions on Consumer Electronics, vol. 52, no. 1, pp. 81-86, 2006.
[43] G. Convertino, S. Oliva, F. Sigona, L. Anchora, An adaptive FEC scheme to reduce bursty losses in a 802.11 network. IEEE Global Telecommunications Conference, pp. 1-6, 2006.
[44] F. Vacirca, A. Vebductis, A. Baiocchi, Optimal design of hybrid FEC/ARQ schemes for TCP over wireless links with Rayleigh fading. IEEE Transactions on Mobile Computing, vol. 5, no. 4, pp. 289-302, 2006.
[45] C. Lin, C. Ke, C. Shieh and N. Chilamkurti, An Enhanced Adaptive FEC Mechanism for Video Delivery over Wireless Networks. IEEE International conference on Networking and Services, pp. 106-111, 2006.
[46] S. Choi, Y. Choi and I. Lee, IEEE 802.11 MAC-Level FEC scheme with retransmission combining. IEEE Transactions on Wireless Communications, vol. 5, no. 1, pp. 203-211, 2006.
[47] L. Libman and A. Orda, Optimal packet-level fec strategies in connections with large delay-bandwidth products. IEEE Transactions on Wireless Communications, vol. 5, no. 7, pp. 1645-1650, 2006.
[48] H. Seferoglu, Y. Altunbasak, O. Gurbuz, O. Ercetin, Rate distortion optimized joint ARQ-FEC scheme for real-time wireless multimedia. IEEE International Conference on Communications, pp. 1190-1194, 2005.
[49] F. Borgonovo and A. Capone, Efficiency of error-control schemes for real-time wireless applications on the Gilbert channel. IEEE Transactions on Vehicular Technology, vol. 54, no. 1, pp. 246-258, 2005.
[50] A. Willig, Redundancy concepts to increase transmission reliability in wireless industrial LANs. IEEE Transactions on Industrial Informatics, vol. 1, no. 3, pp. 173-182, 2005.
[51] Z. Li, C. Jacob, L. Shen and L. Wang, Video quality in transmission over burst-loss channels: a forward error correction perspective. IEEE Communications Letters, vol. 15, no. 2, pp. 238-240, 2011.
[52] H. Hadizadeh and I Bajic, Burst loss resilient packetization of video. IEEE International Conference Communications, pp. 1-5, 2010.
[53] Z. Li, J. Chakareski, X. Niu, Y. Zhang and W. Gu, Modeling of distortion caused by Markov-model burst packet losses in video transmission. IEEE International Workshop on Multimedia Signal Processing, pp. 1-6, 2009.
[54] Z. Li, J. Chakareski, X. Niu, Y. Zhang and W. Gu, Modeling and analysis of distortion caused by Markov-model burst packet losses in video transmission. IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, no. 7, pp. 917-931, 2009.
[55] S. Russ and S. Haghani, 802.11g packet-loss behavior at high sustained bit rates in the home. IEEE Transactions on Consumer Electronics, vol. 55, no. 2, pp. 788-791, 2009.
[56] P. Wu, C. Lee, V. Gau and J. Hwang, Overcoming burst packet loss in peer-to-peer live streaming systems. IEEE International Symposium on Circuits and Systems, pp. 3514-3517, 2008.
[57] J. Pyun and H. Choi, Error concealment aware error resilient video coding over wireless burst-packet-loss network. IEEE Consumer Communications and Networking Conference, pp. 824-828, 2008.
[58] Y. Liang, J. Apostolopoulos and B. Girod, Analysis of packet loss for compressed video: effect of burst losses and correlation between error frames. IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, no. 7, pp. 861-874, 2008.
[59] A. Gomez, A. Peinado, V. Sanchez, A. Rubio, On the Ramsey class of interleavers for robust speech recognition in burst-like packet loss. IEEE Transactions on Audio, Speech and Language Processing, vol. 15, no. 4, 1496-1499, 2007.
[60] S. Moon and J. Kim, Network-adaptive selection of transport error control (NASTE) for video streaming over WLAN. IEEE Wireless Communications and Networking Conference, pp. 4284-4288, 2007.
[61] C. Lin, C. Ke, C. Shieh, N. Chilamkurti, The packet loss effect on MPEG video transmission in wireless networks. IEEE International Conference on Advanced Information Networking and Applications, pp. 565-572, 2006.
[62] B. Milner and A. James, Robust speech recognition over mobile and IP networks in burst-like packet loss. IEEE Transactions on Audio, Speech and Language Processing, vol. 14, no. 1, 223-231, 2006.
[63] X. Yang, Z. Ce, Z. Li, X. Lin and N. Ling, An unequal packet loss resilience scheme for video over the Internet. IEEE Transactions on Multimedia, vol. 7, no. 4, pp. 753-765, 2005.
[64] Q. Qu, Y. Pei, J. Modestino, X. Tian, Error-resilient wireless video transmission using motion-based unequal error protection and intraframe packet interleaving. IEEE International Conference on Image Processing, pp. 837-840, 2004.
[65] J. Pyun, J. Lee, J. Jeong, J. Jeong and S. Ko, Robust error concealment for visual communications in burst-packet-loss networks. IEEE Transactions on Consumer Electronics, vol. 49, no. 4, pp. 1013-1019, 2003.
[66] H. Koumaras, C. Lin, C. Shieh and A. Kourtis, A framework for end-to-end video quality prediction of MPEG video. Journal of Visual Communication and Image Representation, vol. 21, no. 2, pp. 139-154, 2010.
[67] S. Tao, J. Apostolopoulos, J and R. Guerin, Real-time monitoring of video quality in IP networks. IEEE/ACM Transactions on Networking, vol. 16, no. 5, pp. 1052-1065, 2008.
[68] R. Shmueli, O. Hadar, R. Huber, M. Maltz and M. Huber, Effects of an encoding scheme on perceived video quality transmitted over lossy Internet Protocol networks. IEEE Transactions on Broadcasting, vol. 54, no. 3, pp. 628-640, 2008.
[69] Y. Yuan, B. Cockburn, T. Sikora and M. Mandal, Efficient allocation of packet-level forward error correction in video streaming over the internet. Journal of Electronic Imaging, vol. 16, no. 2, pp. 1-12, 2007.
[70] S. Chan, X. Zheng, Q. Zhang, W. Zhu and Y. Zhang, Video loss recovery with FEC and stream replication. IEEE Transactions on Multimedia, vol. 8, no. 2, pp. 370-381, 2006.
[71] S. Kanumuri, P. Cosman, A. Reibman and V. Vaishampayan, Modeling packet-loss visibility in MPEG-2 video. IEEE Transactions on Multimedia, vol. 8, no. 2, pp. 341-355, 2006.
[72] L. Kang and J. Leou, A hybrid error concealment scheme for MPEG-2 video transmission based on best neighborhood matching algorithm. Journal of Visual Communication and Image Representation, vol. 16, no. 3, pp. 288-310, 2005.
[73] T. Ahmed, A. Mehaoua, R. Boutaba and Y. Iraqi, Adaptive packet video streaming over IP networks: A cross-layer approach. IEEE Journal on Selected Areas in Communications, vol. 23, no. 2, pp. 385-401, 2005.
[74] A. Reibman, V. Vaishampayan and Y. Sermadevi, Quality monitoring of video over a packet network. IEEE Transactions on Multimedia, vol. 6, no. 2, pp. 327-334, 2004.
[75] J. Wu and M. Hassan, Avoiding useless packet transmission for multimedia over IP networks: the case of multiple multimedia flows. Computer Communications, vol. 27, no. 7, pp. 651-663, 2004.
[76] J. Chien, G. Li and M. Chen, Effective error concealment algorithm of whole frame loss for H.264 video coding standard by recursive motion vector refinement. IEEE Transactions on Consumer Electronics, vol. 56, no. 3, pp. 1689-1695, 2010.
[77] R. Satyan, S. Nyamweno and F. Labeau, Novel prediction schemes for error resilient video coding. Signal Processing-Image Communication, vol. 25, no. 9, pp. 648-659, 2010.
[78] B. Yan and H. Gharavi, A hybrid frame concealment algorithm for H.264/AVC. IEEE Transactions on Image Processing, vol. 19, no. 1, pp. 98-107, 2010.
[79] S. Gao and K. Ma, Error-resilient H.264/AVC video transmission using two-way decodable variable length data block. IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, no. 3, pp. 340-350, 2010.
[80] M. Ma, O. Au, S. Chan and L. Guo, Error resilient video coding using B pictures in H.264. IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, no. 10, pp. 1448-1461, 2009.
[81] E. Masala, A. Vesco, M. Baldi and J. Martin, Optimized H.264 video encoding and packetization for video transmission over pipeline forwarding networks. IEEE Transactions on Multimedia, vol. 11, no. 5, pp. 972-985, 2009.
[82] S. Chen and H. Leung, A temporal approach for improving intra-frame concealment performance in H.264/AVC. IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, no. 3, pp. 422-426, 2009.
[83] H. Hu, D. Jiang and B. Li, An error resilient video coding and transmission solution over error-prone channels. Journal of Visual Communication and Image Representation, vol. 20, no. 1, pp. 35-44, 2009.
[84] M. Stoufs, A. Munteanu, J. Cornelis and P. Schelkens, Scalable joint source-channel coding for the scalable extension of H.264/AVC. IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, no. 12, pp. 1657-1670, 2008.
[85] M. Hwang, J. Kim, H. Yang, S. Ko and A. Morales, Frame error concealment technique using adaptive inter-mode estimation for H.264/AVC. IEEE Transactions on Consumer Electronics, vol. 54, no. 1, pp. 163-170, 2008.
[86] M. Tsai, N. Chilamkurti, C. Shieh and A. Vinel, MAC-level forward error correction mechanism for minimum error recovery overhead and retransmission. Mathematical and Computer Modelling, vol. 53, no. 11-12, pp. 2067-2077, 2011.
[87] M. Tsai, T. Huang, C. Shieh and K. Chu, Dynamical combination of byte level and sub-packet level FEC in Hybrid ARQ mechanism to reduce error recovery overhead on video streaming over wireless networks. Computer Networks, vol. 54, no. 17, pp. 3049-3067, 2010.
[88] G. Shen and E. Liu, Correlated FEC scheme for transmission reliability over burst error wireless channels. IEEE International Vehicular Technology Conference, pp. 856-860, 2006.
[89] M. Tsai, T. Huang, C. Shieh and W. Hwang, Adaptive hybrid error correction model for video streaming over wireless networks. Multimedia Systems Journal, vol. 17, no. 4, pp. 327-340, 2011.
[90] M. Tsai, N. Chilamkurti and C. Shieh, An adaptive packet and block length forward error correction for video streaming over wireless networks. Wireless Personal Communications, vol. 56, no. 3, pp. 435-446, 2011.
[91] M. Tsai, N. Chilamkurti and C. Shieh, A network adaptive forward error correction mechanism to overcome burst packet losses for video streaming over wireless networks. Journal of Internet Technology, vol. 11, no. 4, pp. 473-482, 2010.
[92] A. Wolisz (head of group), Telecommunication networks group, Faculty of Electrical Engineering and Computer Science, MPEG trace file. Available from: http://trace.eas.asu.edu/.
[93] C. Ke, C. Lin, C. Shieh and W. Hwang, Evaluation of streaming MPEG video over wireless channels. Journal of Mobile Multimedia, vol. 3, no.1, pp. 47-64, 2007.
校內:2016-07-14公開