簡易檢索 / 詳目顯示

研究生: 陳彥臻
Chen, Yen-Chen
論文名稱: 以值積元素法分析非均勻邊界條件及厚度之複合層板的動態特性
Vibration Analysis of Laminated Plates with Non-uniform Boundaries and Thickness by Quadrature Element Method
指導教授: 崔兆棠
Choi, Siu-Tong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 59
中文關鍵詞: 非均勻厚度非均勻邊界條件值積元素法複合層板動態分析振動分析
外文關鍵詞: Vibration Analysis, Laminated Plates, Quadrature Element Method, QEM, Non-uniform, Boundary, Thickness
相關次數: 點閱:106下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主旨在於利用值積元素法(Quadrature Element Method)來分析非均勻邊界條件及厚度的古典複合層板的動態特性。本文先應用微分值積法的轉化規則,推導複合層板元素的離散化代數方程式,經由元素的接合,得到整個複合層板的離散代數方程式;再求解均勻或不均勻邊界條件與厚度下複合層板的自然頻率,與文獻上的結果做比較。進而探討不同纖維角度、疊層數及長寬比對層板自然頻率的影響。由分析結果顯示,應用值積元素法在複合層板的振動分析上可以得到準確的結果。

    In this thesis, the dynamic characteristic of symmetrically laminated plates with non-uniform boundaries and thickness is investigated by using the Quadrature Element Method (QEM) and the classical plate theory. First, we apply the formulation of differential quadrature to obtain the discrete algebraic governing equations of laminated plate elements, which are then assembled to get the discrete equations for the entire plate. Non-dimensional frequencies of symmetrically laminated plates with uniform or non-uniform boundaries and thickness are obtained, and compared with those in the literature. Furthermore, the non-dimensional frequencies of laminated plates for different fiber orientation angles, numbers of layers and aspect ratios are studied. Numeral results show the high accuracy and efficiency of the QEM for vibration analysis of laminated plates.

    摘要 i 英文摘要 ii 致謝 iii 表目錄 vi 圖目錄 vii 第一章 緒論 1 1-1研究動機 1 1-2文獻回顧 2 1-3本文研究 5 第二章 系統運動方程式 7 2-1位移場 7 2-2運動方程式 8 2-3對稱型複合層板 10 2-4邊界條件 10 第三章 值積元素法 12 3-1微分值積法的原理 12 3-2取樣點 14 3-3微分值積法之應用 15 3-3-1修正關係式 17 3-3-2修正矩陣的調整 19 3-4值積元素法 19 3-4-1複合層板元素 20 3-4-2相鄰元素的接合 23 3-4-3邊界條件的調整 24 第四章 數值結果與討論 26 4-1收斂性分析 26 4-1-1對稱正交層板 27 4-1-2對稱斜交層板 27 4-2非均勻邊界條件的複合層板 28 4-3非均勻厚度的複合層板 29 4-4擬等向性層板 29 第五章 結論 31 參考文獻 33 自述 60

    1. N. J. Huffington, Jr. and W. H. Hoppman, 1958, “On the Transverse Vibrations of Rectangular Orthotropic Plates,” Journal of Applied Mechanics., Vol. 25, No. 3, pp. 389-395.
    2. S. R. Soni and C. L. Amba Rao, 1974, “Vibration of Thin, Orthotropic Rectangular Plates Under In-Plane Forces,” Computers and Structures, Vol. 4, No. 5, pp. 1105-1115.
    3. P. A. A. Laura and L. E. Luisoni, 1978, “Vibrations of Orthotropic Rectangular Plates with Edges Possessing Different Rotational Flexibility and Subjected to In-Plane Forces,” Computers and Structures, Vol. 9, pp. 527-532.
    4. Y. Narita, 1981, “Application of a Series-Type Method to Vibration of Orthotropic Rectangular Plates with Mixed Boundary Conditions,” Journal of Sound and Vibration, Vol. 77, No. 3, pp. 345-355.
    5. A. W. Leissa and Y. Narita, 1989, “Vibration Studies for Simply Supported Symmetrically Laminated Rectangular Plates,” Composite Structures, Vol. 12, pp. 113-132.
    6. S. T. Chow, K. M. Liew and K. Y. Lam, 1992, “Transverse Vibration of Symmetrically Laminated Rectangular Composite Plates,” Composite Structures, Vol. 20, pp. 213-226.
    7. K. M. Liew, 1990, The Development of 2-D Orthogonal Polynomials for Vibration of Plates, PhD Thesis, National University of Singapore, Singapore.
    8. K. M. Liew, K. C. Hung and M. K. Lim, 1993, “Method of Domain Decomposition in Vibration of Mixed Edge Anisotropic Plates,” International Journal of Solids and Structures, Vol. 30, No. 23, pp. 3281-3301
    9. T.-P. Chang and M.-H. Wu, 1997, “On the Use of Characteristic Orthogonal Polynomials in the Free Vibration Analysis of Rectangular Anisotropic Plates with Mixed Boundaries and Concentrated Masses,” Computers and Structures, Vol. 62, No. 4, pp. 699-713.
    10. D. J. Dawe and D. Tan, 1999, “Finite Strip Buckling and Free Vibration Analysis of Stepped Rectangular Composite Laminated Plates,” International Journal for Numerical Methods in Engineering, Vol. 46, pp. 1313-1334.
    11. R. E. Bellman and J. Casti, 1971, “Differential Quadrature and Long-Term Integration,” Journal of Mathematical Analysis and Application, Vol. 34, pp. 235-238.
    12. F. Civan and C. M. Sliepcevich, 1984, “Differential Quadrature for Multi-Dimensional Problems,” Journal of Mathematical Analysis and Application, Vol. 101, pp. 423-443.
    13. C. W. Bert, S. K. Jang and A. G. Striz, 1988, “Two New Approximate Methods for Analyzing Free Vibration of Structural Components,” AIAA Journal, Vol. 26, pp. 612-618.
    14. C. Shu and B. E. Richards, 1992, “Application of Generalized Differential Quadrature to Solve Two-dimensional Incompressible Navier-Stokes Equations,” International Journal of Numerical Methods for Fluids, Vol. 15, pp. 791-798.
    15. X. Wang, C. W. Bert and A. G. Striz, “Differential Quadrature Analysis of Deflection, Buckling, and Free Vibration of Beams and Rectanglar Plates,” Computers and Structures, Vol. 48, pp. 473-479, 1993.
    16. C. W. Bert and M. Malik, 1996, “Differential Quadrature Method in Computational Mechanics: A Review,” ASME Applied Mechanics Review, Vol. 49, No. 1, pp. 1-28.
    17. X. Wang and C. W. Bert, 1993, “A New Approach in Applying Differential Quadrature to Static and Free Vibrational Analyses of Beams and Plates,” Journal of Sound and Vibration, Vol. 162, No. 3, pp. 566-572.
    18. C. W. Bert and X. Wang, 1994, “Static and Free Vibrational Analysis of Beams and Plates by Differential Quadrature Method,” Acta Mechanics, Vol. 102, No. 1, pp. 11-24.
    19. J. Farsa, A. R. Kukreti and C. W. Bert, 1993, “Fundamental Frequency Analysis of Laminated Rectangular Plate by Differential Quadrature Method,” International Journal for Numerical Methods in Engineering, Vol. 36, pp. 2341-2356.
    20. C. W. Bert and M. Malik, 1997, “Differential Quadrature: A Powerful New Technique for Analysis of Composite Stuctures,” Composite Structures, Vol. 39, pp. 179-189.
    21. S.-T. Choi and Y.-T. Chou, 2001, “Vibration Analysis of Elastically Supported Turbomachinery Blades by the Modified Differential Quadrature Method,” Journal of Sound and Vibration, Vol. 240, pp. 937-953.
    22. A. G. Striz, W. Chen and C. W. Bert, 1994, “Static Analysis of Structures by the Quadrature Element Method (QEM), ” International Journal of Solids and Structures, Vol. 31, pp. 2807-2818.
    23. K. M. Liew, J.-B. Han and Z. M. Xiao, 1997, “Vibration Analysis of Circular Mindlin Plates Using the Differential Quadrature Method,” Journal of Sound and Vibration, Vol. 205, pp. 617-630.
    24. F.-L. Liu and K. M. Liew, 1998, “Static Analysis of Reissner-Mindlin Plates by Differential Quadrature Element Method,” Journal of Applied Mechanics, Vol. 65, pp. 705-710.
    25. F.-L. Liu and K. M. Liew, 1999, “Analysis of Vibrating Thick Rectangular Plates with Mixed Boundary Constraints Using Differential Quadrature Element Method,” Journal of Sound and Vibration, Vol. 225, pp. 915-934.
    26. 周玉端, 民國八十九年六月, 改良型微分值積法及其元素法於結構力學之應用, 國立成功大學博士論文, 台南市.
    27. F.-L. Liu, 2000, “Static Analysis of Thick Rectangular Laminated Plates: Three-Dimensional Elasticity Solutions via Differential Quadrature Element Method,” International Journal of Solids and Structures, Vol. 37, pp. 7671-7688.
    28. C. N. Chen, 2001, “Vibration of Nonuniform Shear Deformable Axisymmetric Orthotropic Circular Plates Solved by DQEM,” Composite Structures, Vol. 53, pp. 257-264.
    29. 黃俊智, 民國九十一年六月,微分值積元素法於Mindlin平板之振動分析, 國立成功大學碩士論文, 台南市.
    30. C. T. Herakovich, 1998, Mechanics of Fibrous Composite, John Wiley & Sons, Inc., New York.
    31. J. M. Whitney, 1987, Structural Analysis of Laminated Anisotropic Plates, Technomic Publ. Co., Lancaster, PA.

    下載圖示 校內:立即公開
    校外:2003-08-19公開
    QR CODE