簡易檢索 / 詳目顯示

研究生: 洪偉洲
Ang, Wei-Zhou
論文名稱: 利用強震資料之單站頻譜比探討臺北盆地場址特性與液化潛能
Study on the Site Effect and Liquefaction Potential of Taipei Basin Using the Horizontal-to-Vertical Spectral Ratio of Strong Motion Data
指導教授: 柯永彥
Ko, Yung-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 158
中文關鍵詞: 液化潛能評估強震資料單站頻譜比法場址特性Nakamura損傷指數
外文關鍵詞: Liquefaction potential evaluation, Strong motion data, HVSR, Site effect, Nakamura vulnerability index
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對臺北盆地內各個氣象局強震測站,使用實測地震紀錄並透過單站頻譜法來探討臺北盆地之場址效應,並利用場址效應因子計算Nakamura損傷指數Kg值,與各測站實際之液化潛能相比較,希望能藉此建立出損傷指數Kg值與液化潛能之相關性。首先,利用全國強震測站場址工程地質資料庫(EGDT)之臺北盆地各測站鑽探資料,以雙曲線函數評估法(HBF法)、美國國家地震工程研究中心評估法(NCEER法)、日本建築學會評估法(AIJ法)及新日本道路協會評估法(NJRA法)進行液化潛能評估,並探討各方法之差異性;其中,以HBF法、NJRA法及NCEER法等三種方法結果較為相近,AIJ法所得液化潛能則較其他三種方法明顯為低。接著,由1999年至2019年間之地震事件中選取臺北盆地之有效地震記錄,先以傅立葉轉換檢視地震動之頻率特性,再以單站頻譜比法探討臺北盆地之場址特性。結果顯示,由單站頻譜比所判釋之地盤顯著頻率,在臺北盆地內大致小於2Hz,盆地邊緣則會大於2Hz,顯示出顯著頻率能展現場址岩盤深度之差異;此外,顯著頻率與平均剪力波速呈現相當之正相關性,代表顯著頻率會受到近地表土層勁度所影響。進一步由顯著頻率與放大係數計算損傷指數Kg值,並與液化潛能指數(LPI)進行相關性探討,兩者雖略呈正相關,但相關性偏低,約略可將Kg值為40視為高液化潛能之門檻。綜合以上,可知利用強震資料進行單站頻譜法分析可合理評估場址地盤特性,據以計算之損傷指數Kg值可概略反映出液化潛能之趨勢,將可做為液化防治之初步參考。

    In this study, the site effect of Taipei Basin was studied by using the strong motion data and the HVSR method. The site effect factors were used to calculate the Nakamura vulnerability index (Kg), which was then correlated to the liquefaction potential of the site. Firstly, the LPI was evaluated through HBF method, NCEER method, AIJ method and NJRA method based on borehole data. Among them, the results of the HBF, NJRA and NCEER methods are relatively similar, while the AIJ method yields somewhat lower LPI than the other three methods. Then, earthquake records from 1999 to 2019 were used to obtain HVSR, and the results showed that the predominant frequency is approximately less than 2Hz in the basin and greater than 2Hz at the margin of basin, indicating that the predominant frequency reveals the difference in the bedrock depth of the site and is dependent on near-surface velocity structure of the ground. Moreover, Kg values were calculated using predominant frequencies and amplification factors identified from HVSR, and the result showed that Kg is only slightly positive correlated to LPI. A Kg value of 40 could be roughly regarded as the threshold of high liquefaction potential. In conclusion, HVSR analysis using strong motion data can provide a reasonable assessment of the site effect, and Kg can approximately reflect the trend of liquefaction potential, which can be used as a preliminary reference for liquefaction mitigation.

    摘要 I Abstract II 致謝 V 目錄 VI 表目錄 X 圖附錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 研究方法與流程 6 1.4 論文架構 6 第二章 文獻回顧 9 2.1 土壤液化 9 2.1.1 土壤液化概述及現象 9 2.1.2 土壤液化機制及影響因素 10 2.2 液化潛能評估方法 11 2.2.1 雙曲線函數評估法(HBF法) 11 2.2.2 美國國家地震工程研究中心評估法(NCEER法) 13 2.2.3 日本建築學會評估法(AIJ法) 15 2.2.4 新日本道路協會評估(NJRA法) 18 2.2.5 Iwasaki液化潛能指數(LPI) 20 2.2.6 設計地震規模與震區加速度 21 2.2.7 各液化分析方法之差異 23 2.3 場址效應 25 2.3.1 雙站頻譜比法 25 2.3.2 單站頻譜比法 28 2.3.3 單站頻譜比法於地震資料之應用 31 2.3.4 Nakamura損傷指數與其應用 31 第三章 研究區域介紹 36 3.1 臺北盆地簡介 36 3.1.1 臺北盆地演化 36 3.1.2 臺北盆地工程地質 38 3.2 臺北盆地地盤特性 40 3.3 臺北盆地地震測站 46 3.3.1 強震測站場址工程地質鑽探資料 46 3.3.2 本研究所選用之強震測站 46 3.4 地下水狀況 51 第四章 強震測站場址液化潛能分析 53 4.1 土壤液化評估相關參數 53 4.2 HBF法分析結果 56 4.3 NJRA法分析結果 59 4.4 AIJ法分析結果 62 4.5 NCEER法分析結果 65 4.6 Vs30-LPI之相關性 68 4.7 綜合比較 72 第五章 地震資料收集及分析方法 74 5.1 地震資料 74 5.1.1 強震測站儀器介紹 74 5.1.2 地震篩選 76 5.1.3 地震歷時擷取 82 5.2 分析方法 87 5.2.1 傅立葉轉換 87 5.2.2 單站頻譜比法 87 第六章 分析結果 91 6.1 地震動顯著頻率與場址頻率之判釋 91 6.2 地震動顯著頻率(fFFT)與震央距與地震規模之關係 92 6.3 場址顯著頻率(fH/V)與Vs之關係 97 6.3.1 fH/V-Vs之盒鬚圖 97 6.3.2 fH/V-Vs之異向性 103 6.3.3 fH/V-Vs之相關性 105 6.4 場址顯著頻率(fH/V)與LPI之關係 111 6.4.1 fH/V-LPI之盒鬚圖 111 6.4.2 fH/V-LPI之相關性 116 6.5 Kg與LPI之關係 126 6.5.1 Kg-LPI之盒鬚圖 126 6.5.2 Kg-LPI之異向性 136 6.5.3 Kg-LPI之相關性 141 第七章 結論與建議 151 7.1 結論 151 7.2 建議 153 參考文獻 154

    1. 內政部,建築物耐震設計規範與解說,2011。
    2. 內政部,建築物耐震設計規範及解說部分規定修正草案,台內營字第1100807986號,2021。
    3. 日本道路協會(Japan Road Association, JRA),日本道路協會規範法,1990。
    4. 日本道路協會(New Japan Road Association, NJRA),道路橋示方書同解說,V耐震設計篇,1996。
    5. 日本建築學會(Architectural Institute of Japan, AIJ),建築基礎構造設計指針,2001。
    6. 林榮潤,「臺灣的岩石風化與土壤形成之特性 」,地質季刊,第30卷,第2期,第78-83頁,2011。
    7. 陳俊德,「利用有限斷層法探討臺北盆地之場址效應」,國立中央大學地球物理研究所,碩士論文, 2006。
    8. 郭俊翔、林哲民、謝宏灝、溫國樑,「近地表剪力波速特性」,國家地震工程研究中心簡訊,2011。
    9. 黃水添,「臺北盆地地下水位改變對地層下陷與液化潛能之影響」,國立成功大學土木工程研究所,碩士論文, 2002。
    10. 黃俊鴻、楊志文與陳正興,「本土化液化評估方法之建議--雙曲線液化強度曲線」,地工技術,103卷,第53-64頁,2005。
    11. 黃于庭,「台南地區土壤液化評估方法適用性之研究」,國立成功大學土木工程研究所,碩士論文,2018。
    12. 彭振聲、曾俊傑、蕭秋安、廖繼仁與趙慶宇,「HBF、NJRA、SEED、T&Y等四種土壤液化分析方法應用於臺北市之比較及探討」,土木水利,45(4),第52-58頁,2018。
    13. 「臺北盆地的地質與防災」,經濟部中央地質調查所,2011。
    14. 鄧屬予,「板塊間看臺灣地震」,科學發展,第350卷,第12-19頁,2002。
    15. 鄧屬予、劉聰桂、陳于高、劉平妹、李錫堤、劉桓吉與彭志雄,「大漢溪襲奪對臺北盆地的影響」,師範大學地理學系,地理研究報告第41號,第61-78頁, 2004。
    16. 鄧屬予,「臺北盆地之地質研究」,WESTERN PACIFIC EARTH SCIENCES, 6,第1-28頁,2006。
    17. 鄧屬予,「臺灣第四紀大地構造」,經濟部中央地質調查所特刊,第18號, 第1-24頁,2007。
    18. 謝宏灝,「利用井下地震儀陣列探討單站頻譜比法之應用」,國立中央大學地球物理研究所,碩士論文,2001。
    19. Arias, A., “Measure of Earthquake Intensity. Massachusetts Inst. of Tech.”, Cambridge. Univ. of Chile, Santiago de Chile, 1970.
    20. Baltay, A. S., Hanks, T. C. & Abrahamson, N. A., “Earthquake stress drop and arias intensity.”, Journal of Geophysical Research: Solid Earth, 124(4), 3838-3852, 2019.
    21. Bonilla, L. F., Steidl, J. H., Lindley, G. T., Tumarkin, A. G. & Archuleta, R. J., “Site amplification in the San Fernando Valley, California: variability of site-effect estimation using the S-wave, coda, and H/V methods.”, Bulletin of the Seismological Society of America, 87(3), 710-730,1997.
    22. Bonilla, L. F., Steidl, J. H., Gariel, J. C. & Archuleta, R. J., “Borehole response studies at the Garner Valley downhole array, southern California.”, Bulletin of the Seismological Society of America, 92(8), 3165-3179, 2002.
    23. Borcherdt, R. D., “Effects of local geology on ground motion near San Francisco Bay.”, Bulletin of the Seismological Society of America, 60(1), 29-61, 1970.
    24. Bozorgnia, Y., Abrahamson, N.A., Atik, L.A., Ancheta, T.D., Atkinson, G.M., Baker, J.W., Baltay, A., Boore, D.M., Campbell, K.W., Chiou, B.S.J. and Darragh, R., “NGA-West2 research project.”, Earthquake Spectra, 30(3), 973-987, 2014.
    25. Carniel, R., Barazza, F. & Pascolo, P., “Improvement of Nakamura technique by singular spectrum analysis.”, Soil Dynamics and Earthquake Engineering, 26(1), 55-63, 2006.
    26. Chen, Y., Lee, Y. & Wang, C., “An Investigation of the Subsurface Structure and P-and S-wave Velocities in the Taipei Basin, Taiwan.”, In AGU Fall Meeting Abstracts (Vol. 2004, pp. S43B-1000), 2004.
    27. Hossain, M. S., Kamal, A. M., Rahman, M. Z., Rahman, M. M., Nahar, K. & Woobaidullah, A. S. M., “Predominant period and amplification factor estimation with respect to geomorphology-a case study of Sylhet city corporation area, Bangladesh.”, Bangladesh Journal of Scientific Research, 27(1), 1-10, 2014.
    28. Huang, H. C. & Tseng, Y. S., “Characteristics of soil liquefaction using H/V of microtremors in Yuan-Lin area, Taiwan.”, Terrestrial Atmospheric and Oceanic Sciences, 13(3), 325-338, 2002.
    29. Hwang, J. H., Chen, C. H., & Juang, C. H., “Calibrating the model uncertainty of the HBF simplified method for assessing liquefaction potential of soils.”, Sino-geotechnics, 133, 77-86, 2012.
    30. Ishihara, K., “Stability of natural deposits during earthquakes.” In International conference on soil mechanics and foundation engineering., 11, 321-376, 1985.
    31. Iwasaki, T., Tokida, K. I., Tatsuoka, F., Watanabe, S., Yasuda, S. & Sato, H., “Microzonation for soil liquefaction potential using simplified methods.”, In Proceedings of the 3rd international conference on microzonation, Seattle Vol. 3, No. 2, 1310-1330, 1982.
    32. Iwasaki, T., Arakawa, T. & Tokida, K. I., “Simplified procedures for assessing soil liquefaction during earthquakes.” International Journal of Soil Dynamics and Earthquake Engineering, 3(1), 49-58, 1984.
    33. Konno, K. & Ohmachi, T., “Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor.”, Bulletin of the Seismological Society of America, 88(1), 228-241, 1998.
    34. Kuo, C. H., Wen K. L., Hsieh H. H., Lin C.M., Chang T. M. and Kuo K.W., “Site classification and VS30 estimation of free-field TSMIP stations using the logging data of EGDT.”, Engineering Geology, 129-130: 68-75, 2012.
    35. Lermo, J. & Chávez-García, F. J., “Site effect evaluation using spectral ratios with only one station.”, Bulletin of the seismological society of America, 83(5), 1574-1594, 1993.
    36. Lermo, J. & Chávez-García, F. J., “Site effect evaluation at Mexico City: dominant period and relative amplification from strong motion and microtremor records.”, Soil Dynamics and Earthquake Engineering, 13(6), 413-423, 1994.
    37. Mucciarelli, M. & Gallipoli, M. R., “The HVSR technique from microtremor to strong motion: empirical and statistical considerations.”, In Proc. of 13th World Conference of Earthquake Engineering, Vancouver, BC, Canada, Paper (Vol. 45), 2004.
    38. Nagashima, F., Matsushima, S., Kawase, H., Sánchez‐Sesma, F. J., Hayakawa, T., Satoh, T. & Oshima, M., “Application of horizontal‐to‐vertical spectral ratios of earthquake ground motions to identify subsurface structures at and around the K‐NET site in Tohoku, Japan.”, Bulletin of the Seismological Society of America, 104(5), 2288-2302, 2014.
    39. Nakamura, Y., “Real-time information systems for seismic hazards mitigation UrEDAS, HERAS and PIC.”, Quarterly Report-Rtri, 37(3), 112-127, 1996.
    40. Rong, M. S., Li, X. J., Wang, Z. M. & Lv, Y. J., “Applicability of HVSR in analysis of site-effects caused by earthquakes.” Chinese Journal of Geophysics, 59(8), 2878-2891, 2016.
    41. Rong, M., Fu, L. Y., Wang, Z., Li, X., Carpenter, N. S., Woolery, E. W. & Lyu, Y., “On the Amplitude Discrepancy of HVSR and Site Amplification from Strong‐Motion Observations.”, Bulletin of the Seismological Society of America, 107(6), 2873-2884, 2017.
    42. Rong, M., Fu, L. & Wang, J., “On the differences between horizontal-to-vertical spectral ratios caused by earthquakes and ambient noise—A case study of vertical-array observations in Northern China.”, Journal of Applied Geophysics, 182, 104-171, 2020.
    43. Seed, H. B. and Idriss, I. M., “Simplified procedure for evaluating soil liquefaction potential”, Journal of the Soil Mechanics and Foundations division, 97(9), 1249-1273, 1971.
    44. Seed, H. B., Tokimatsu, K., Harder, L. F., & Chung, R. M., “Influence of SPT procedures in soil liquefaction resistance evaluations.”, Journal of geotechnical engineering, 111(12), 1425-1445, 1985.
    45. Shin, T.C., Chang C.H., Pu H.C., Lin H.W. and Leu P.L., “The Geophysical Database Management System in Taiwan.”, Terrestrial, Atmospheric and Oceanic Sciences 24(1), 11-18, 2013.
    46. Tatsuoka, F., Iwasaki, T., Tokida, K. I., Yasuda, S., Hirose, M., Imai, T. & Kon-No, M., “Standard penetration tests and soil liquefaction potential evaluation.”, Soils and Foundations, 20(4), 95-111, 1980.
    47. Tokimatsu, K. and Yoshimi, Y., “Empirical correlation of soil liquefaction based on SPT N-value and fines content”, Soils and Foundations, 23(4), 56-74, 1983.
    48. Wen, K. L. & Peng, H. Y., “Site effect analysis in the Taipei basin: Results from TSMIP network data.”, Terr. Atmos. Ocean. Sci, 9(4), 691-704, 1998.
    49. Yaghmaei-Sabegh, S. & Rupakhety, R., “A new method of seismic site classification using HVSR curves: A case study of the 12 November 2017 Mw 7.3 Ezgeleh earthquake in Iran.”, Engineering Geology, 270, 105-574, 2020.
    50. Youd, T. L. & Idriss, I. M., “Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils.”, Journal of geotechnical and geoenvironmental engineering, 127(4), 297-313, 2001.
    51. Zare, M., Bard, P. Y. & Ghafory-Ashtiany, M., “Site characterizations for the Iranian strong motion network.”, Soil Dynamics and Earthquake Engineering, 18(2), 101-123, 1999.

    下載圖示 校內:2025-03-31公開
    校外:2025-03-31公開
    QR CODE