| 研究生: |
陳昭安 Chen, Chao-An |
|---|---|
| 論文名稱: |
牙科填補物對於人類牙髓幹細胞的影響 Effects of Dental Restorative Materials on Human Dental Pulp Stem Cells |
| 指導教授: |
莊淑芬
Chuang, Shu-Fen 陳玉玲 Chen, Yuh-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 牙髓幹細胞 、複合樹脂 、玻璃離子黏合劑 、氧化锌丁香油酚基底黏合劑 、細胞毒性 、分化 、礦化 |
| 外文關鍵詞: | Dental pulp stem cell, Composite resin, Glass isomer cement, Zinc oxide eugenol-based cement, Cytotoxicity, Mineralization, Differentiation |
| 相關次數: | 點閱:151 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在組織工程發展中,許多文獻已證明牙髓幹細胞是可分化為多種細胞的可靠來源,而且已應用於幹細胞治療。但在具有牙髓幹細胞的牙齒來源中,可能因蛀牙而需要填補。牙科常用的填補材料包括複合樹脂、玻璃離子黏著劑、汞合金、以及氧化锌丁香油酚基底黏合劑等。從體外細胞實驗研究中,對於這些填補材料釋放出的殘留物質所造成的細胞毒性及基因毒性,已有完整的論文發表結果,證實其中某些材料成份,即使在完整的牙本質的阻隔下,依然能穿透牙本質小管到達牙髓腔,造成影響。然而,只有少數體外(in vitro)研究顯示牙科材料能干擾牙髓幹細胞的分化,目前更缺乏相關的體內實驗。因此這些研究對將來組織工程或幹細胞治療等發展具有重要性。本篇研究的目的是利用體內實驗來調查在牙齒填補牙科材料後,對牙髓幹細胞所造成的反應。
本實驗於36顆牙齒上分別填補三種牙科材料(複合樹脂、玻璃離子黏合劑、以及氧化锌丁香油酚基底黏合劑),經過7日,及30-60日後拔除。首先將牙齒脫鈣後,利用組織學方法來研究牙髓對牙科材料的反應以及牙髓幹細胞的分佈情況。在組織學檢查中可見這些填補物會導致些微的牙髓傷害。再進一步利用組織免疫染色方法去計算幹細胞的數目,在所有組別中都發現於牙髓中心有CD44以及α-SMA陽性免疫反應。比較CD44(+)細胞在所有牙髓細胞的百分比例,相對於填補7日的百分比例,填補30-60日的牙齒幹細胞百分比例逐漸減少,特別在複合樹脂組別的數值最低,但是各組別間並沒有顯著差異。
為了比較牙齒填補後對牙髓幹細胞型態、活性、幹性以及分化特性,於是從各組別培養出的牙髓幹細胞,進行檢查分析。結果發現牙齒經填補後所培養出的牙髓幹細胞,在形態上都呈細小、梭狀的同質性表徵。在細胞增生試驗中,實驗組以及對照組牙髓幹細胞能形成附著性細胞群集,其細胞群落單位以及生長曲線並無明顯差異。代表幹性的Oct4、Nanog以及CD44表達,樹脂填補30-60日組的Oct4表達較高,但各組之間並無明顯差異。各組經過2及4周骨分化後,都有礦物化沈積現象。本結果提示著複合樹脂所釋放出的單體可能會減少牙髓幹細胞的存活數量,但是能提高存活牙髓幹細胞的幹性。此外顯示牙髓幹細胞在牙科材料填補後,雖然對牙髓組織可能造成傷害,但牙髓幹組織密度上只有微量變化,而且保有骨分化的能力。
Numerous studies have approved the significance of DPSC since it may differentiate into various cells to support tissue engineering and stem cell therapy. The source teeth are frequently filled with material including composite resin, glass ionomer, and zinc oxide eugenol-base materials, due to caries. Cytotoxicity and genotoxicity of these restorative materials have been well-documented in in vitro studies. However, only some of these compounds were also found to diffuse through the dentinal tubules and reach the pulp tissue, even in the presence of an intact dentin barrier. However, there is until now fragmentary information available on their biological effects on dental pulp stem cell (DPSC). Only few in vitro studies report that dental materials disturb the differentiation of DPSC. Therefore, it is important to develop further in vivo study in tissue engineering and stem cell therapy. The purpose of this study was to investigate the response of dental pulp stem cell after application of dental restorations in vivo.
In this study, volunteers with scheduled extracted human molar teeth were collected under informed consent. The cavity floor prepared on the occlusal surface of molars was restored with composite resin, glass ionomer and zinc oxide eugenol-base materials. The 36 molars teeth filled with dental restoration were extracted after 7 days and 30-60 days, then were processed for histopathological evaluation in order to examine the pulp response and the distribution of stem-cells. The histopathological finding showed mild pulp damage in teeth with restoration in cavities. The immunoreactivity of CD44 and α-SMA was obviously found in the pulp core of all groups. The stem cell percentage of the groups at day 30-60 decreased comparing with the groups at day 7, with the composite resin group showing the lowest value among groups. There was no significant difference among the tested groups and control group.
In established culture experiment, we investigated the morphology, proliferation, stemness, and differentiation potential of DPSCs. For each group, isolated DPSCs exhibited small, spindle-like, homogeneous morphology. In cell proliferation, all groups of cell formed adherent clonogenic cell cluster; however, there were similar CFU counts between all groups. In WST1 assay, no significant difference was observed among groups. Oct4 expression increased in resin-30days group comparing with control group. Mineralized nodules were formed after 2 and 4 weeks of osteogenic induction. The result suggested that resinous monomers may reduce the viability of DPSC but increased the stemness of the survival DPSCs under inflammatory stimulation. Additionally, the dental restoration caused mild damage of pulp tissue with little alteration in density of DPSCs, and the osteogenic potential was kept after dental restoration.
1. Bajada S, Mazakova I, Richardson JB, Ashammakhi N. Updates on stem cells and
their applications in regenerative medicine. J Tissue Eng Regen Med 2008; 2:169-183.
2. Caplan AI. Mesenchymal stem cells. J Orthop Res 1991; 9:641-650.
3. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282:1145-1147.
4. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 1976:4:267-274.
5. Caplan AI. Mesenchymal stem cells. J Orthop Res 1991;9:641-650.
6. Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 2000; 97:13625-30
7. Miura M, Gronthos S, Zhao M, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 2003; 100:5807-5812.
8. Seo BM, Miura M, Sonoyama W, et al. Recovery of stem cells from cryopreserved periodontal ligament. J Dent Res 2005;84:907-912.
9. Sonoyama W, Liu Y, Yamaza T, et al. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 2008;34:166-171.
10. Caplan AI. Why are MSCs therapeutic? New data: new insight. J Pathol 2009;217: 318–324.
11. Wagner J, Kean T, Young R, Dennis JE, Caplan AI.Optimizing mesenchymal stem cell-based therapeutics. Curr Opin Biotechnol Oct 2009; 20(5):531–536.
12. Morsczeck, C, Gotz, W, Schierholz J, Zeilhofer F, Kuhn U, Mohl C, Sippel C, and Hoffmann KH. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 2005; 24:155-165.
13. Ikeda E, Hirose M, Kotobuki N, Shimaoka, et al. Osteogenic differentiation of
human dental papilla mesenchymal cells. Biochem Biophy Res Commun 2006;342,
1257-1262.
14. Kerkis I, Kerkis A, Dozortsev D, et al. Isolation and characterization of a population of
immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell
markers. Cell Tissue Org 2006;184,105-116.
15. Arthur A, Rychkov G, Shi S, et al. Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells 2008;26:1787–1795.
16. d’Aquino R, Graziano A, Sampaolesi M, et al. Human postnatal dental pulp cells co-diferentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell Death Differ 2007;14:1162–1171.
17. Gandia C, Armiñan A, García-Verdugo JM, et al. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells 2008;26:638–645.
18. Huang AH, Chen YK, Lin LM, et al. Isolation and characterization of dental pulp
stem cells from a supernumerary tooth. J Oral Pathol Med 2008;37:571–574.
19. Iohara K, Nakashima M, Ito M, et al. Dentin regeneration by dental pulp stem cell
therapy with recombinant human bone morphogenetic protein 2. J Dent Res 2004;83:590–595.
20. Yu J, Wang Y, Deng Z, et al. Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells. Biol Cell 2007;99:465–474.
21. Zhang W, Walboomers XF, Shi S, et al. Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Eng 2006;12:2813–2823.
22. Zhang W, Walboomers XF, van Kuppevelt TH, et al. The performance of human dental pulp stem cells on different three-dimensional scaffold materials. Biomaterials 2006;27:5658–5668.
23. Alge DL, Zhou D, Adams LL, Wyss BK, Shadday MD, et al. Donormatched comparison of dental pulp stem cells and bone marrow-derived mesenchymal stem cells in a rat model. J Tissue Eng Regen Med 2010;4:73–81.
24. Karaoz E, Demircan PC, Saglam O, Aksoy A, Kaymaz F, et al. Human dental pulp stem cells demonstrate better neural and epithelial stem cell properties than bone marrow-derived mesenchymal stem cells. Histochem Cell Biol 2011;136: 455–473.
25. Papaccio G, Graziano A, d’Aquino R, Graziano MF, Pirozzi G, et al. Long-term cryopreservation of dental pulp stem cells (SBP-DPSCs) and their differentiated osteoblasts: a cell source for tissue repair. J Cell Physiol 2006;208:319–325.
26. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 2000;97:13625-13630.
27. Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S. The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res 2005;8:191-199.
28. Yu J, Wang Y, Deng Z, et al. Odontogenic capability: bone marrow stromal stem cells
versus dental pulp stem cells. Biol Cell 2007;99:465-474.
29. Ohazama A, Modino SA, Miletich I, Sharpe PT. Stem-cell-based tissue engineering of murine teeth. J Dent Res 2004;83:518-522.
30. Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res 2002;81:695-700.
31. Yu J, Deng Z, Shi J, et al. Differentiation of dental pulp stem cells into regular-shaped dentin-pulp complex induced by tooth germ cell conditioned medium. Tissue Eng 2006;12:3097-3105.
32. Hu B, Nadiri A, Kuchler-Bopp S, Perrin-Schmitt F, Peters H, Lesot H. Tissue engineering of tooth crown, root, and periodontium. Tissue Eng 2006;12:2069-2075.
33. Honda MJ, Tsuchiya S, Sumita Y, Sagara H, Ueda M. The sequential seeding of epithelial and mesenchymal cells for tissue-engineered tooth regeneration. Biomaterials 2007;28:680-689.
34. Song Y, Zhang Z, Yu X, et al. Application of lentivirus-mediated RNAi in studying gene function in mammalian tooth development. Dev Dyn 2006;235:1334-1344.
35. Papaccio G, Graziano A, d’Aquino R, et al. Long-term cryopreservation of dental pulp stem cells (SBP-DPSCs) and their differentiated osteoblasts: a cell source for tissue repair. J Cell Phy 2006;208:319-325.
36. Yang X, Walboomers XF, van den Beucken JJ, Bian Z, Fan M, and Jansen JA. Hard tissue formation of STRO-1-selected rat dental pulp stem cells in vivo. Tissue Eng Part A 2009;15:367-375.
37. El-Backly RM, Massoud AG, El-Badry AM, Sherif RA, and Marei MK. Regeneration of dentine/pulp-like tissue using a dental pulp stem cell/poly(lactic-co-glycolic) acid scaffold construct in New Zealand white rabbits. Aust Endod J 2008;34:52-67.
38. Ikeda E, Morita R, Nakao K, et al. Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci 2009;106:13475-13480.
39. Iohara K, Nakashima M, Ito M et al. Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J Dent Res 2004;83:590-595.
40. d’Aquino R, Rosa AD, Lanza V, et al. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cells Mater 2009;18:75-83.
41. Kenji I, Yoichi, Y, Sayaka N, and Minoru U. Osteogenic potential of effective bone engineering using dental pulp stem cells, bone marrow stem cells, and periodteal cells for ossteointegration of dental implants. Int J Oral Maxillofac Implants 2011;26:947-954.
42. Nosrat IV, Widenfalk J, Olson L, and Nosrat CA. Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev Bio 2001;238:120-132.
43. Huang AH, Snyder BR, Cheng PH, and Chan AW. Putative dental pulp-derived stem/stromal cells promote proliferation and differentiation of endogenous neural cells in the hippocampus of mice. Stem Cells 2008;26:2654-2663.
44. Arthur A, Rychkov G, Shi S, Koblar SA, and Gronthos S. Adult human dental pulp stem cells differentiate towardfunctionally active neurons under appropriate environmental cues. Stem Cells 2008;26:1787-1795.
45. Peutzfeldt A. Resin composites in dentistry: the monomer systems. Ear J Oral Sci 1997;105:97-116.
46. Bouillaguet S, Wataha JC, Hanks CT, Ciucchi B, Holz J. In vitro cytotoxicity and dentin permeability of HEMA. J Endod 1996;22:244–248.
47. Gerzina TM, Hume WR. Diffusion of monomers from bonding resin–resin composite combinations through dentine in vitro. J Dent 1996;24:125–128.
48. Lanza CR, de Souza Costa CA, Furlan M, Alécio A, Hebling J. Transdentinal diffusion and cytotoxicity of self-etching adhesive systems. Cell Biol Toxicol 2009;25(6):533–543.
49. Wilson AD, Kent BE. A new translucent cement for dentistry .The glass ionomer cement. Br Dent J 1972;132:133-135.
50. Sasanaluckit P, Albustany KR, Doherty PJ, Williams DF. Biocompatibility of glass ionomer cements. Biomaterials 1993,14:906-916.
51. McLEAN JW. Alternatives to Amalgam Alloys: 1, Br Dent J 1984; 157:432-433.
52. Cooper IR. The Response of the Human Dental Pulp to Glass Ionomer Cements, Int Endodont J 1980;13:76-88.
53. Tobias RS, Browne, RM, Plant GC, Ingram DV. Pulpal Response to a Glass lonomer Cement, Br Dent J 1978;144:345-350.
54. Dahl BL, Tronstad L. Biological Tests of an Experimental Glass lonomer (Silicopolyacrylate) Cement. J Oral Rehabil 1976;3:19-24.
55. Kawahara H, Imanishi Y, Oshima H. Biological Evaluation on Glass Ionomer Cement, J Dent Res 1979;58:1080-1086.
56. Wilson AD, Clinton DJ, Miller RP. Zinc oxide-eugenoi cements. IV. Microstructure and hydrolysis. J Dent Res 1973;52:253-260.
57. Fogel HM, Marshall F, Pashley DH. Effects of distance from the pulp and thickness on the hydraulic conductance of human radicular dentin. J Dent Res 1988;67:1381–1385.
58. Bra¨nnstro¨m M, Nyborg H. Pulp reaction to a temporary zinc oxide-eugenol cement. J Prosthet Dent 1976;35:185–191.
59. Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis P, Koidis P, et al. Effects of HEMA and TEDGMA on the in vitro odontogenic differentiation potential of human pulp stem/progenitor cells derived from deciduous teeth. Dent Mater 2011;27(6):608–617.
60. Bakopoulou A, Leyhausen G, Volk J. Effects of resinous monomers on the odontogenic differentiation and mineralization potential of highly proliferative and clonogenic cultured apical papilla stem cells. Dental Materials 2012;28(3):327-333.
61. Fluoride release was in direct correlation with cytotoxic activity of GIC on human DPSCs. Fuji plus, Vitrebond and Fuji VIII, which released fluoride in higher quantities than other GICs, were highly toxic to human DPSC. Medicinal chemistry 2012;8:40-45.
62. Anpo M. Shirayama K. Tsutsui T. Cytotoxic effect of eugenol on the expression of molecular markers related to the osteogenic differentiation of human dental pulp cells. Odontology 2011;99:188–192.
63. de Souza Costa CA, Teixeira HM, Lopes do Nascimento AB, Hebling J. Biocompatibility of resin-based dental materials applied as liners in deep cavities prepared in human teeth. J iomed Mater Res B Appl Biomater 2007;81:175–184.
64. Hebling J, Giro EM, Costa CAS. Human pulp response after an adhesive system application in deep cavities. J Dent 1999;27:557–564.
65. Hume WR. A new technique for screening chemical toxieity to the pulp from dental restorative materials and proeedures. J Dent Res 1985:64:1322-1325.
66. Murray PE, About I, Franquin JC, Remusat M, Smith AJ. Restorative pulpal and repair responses.J Am Dent Assoc. 2001;132(4):482-491.
67. Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 2002;160:985–1000.
68. Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human
bone marrow and dental pulp. J Bone Miner Res 2003; 18:696–704.
69. Goldberg M. Pulp healing and regeneration: more questions than answers. Adv Dent Res 2011;23:270–274.
70. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast
colonies in monolayer cultures of guinea pig bone marrow and spleen Cell
Proliferation 1970;3(4):393–403.
71. Kim S. Regulation of pulpal blood flow. J Dent Res 1985; 64:590–596.
72. Constantinescu S. Stemness, fusion and renewal of hematopoietic and embryonic
stem cells. J.Cell.Mol.Med. 2003;7(2):103-112.
73. Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell 2007;129:465–72.
74. Ma D, Gao J, Yue J, Yan W, Fang F, Wu B. Changes in proliferation and osteogenic differentiation of stem cells from deep caries in vitro.J Endod. 2012;38(6):796-802.
75. Pereira LO1, Rubini MR, Silva JR, Oliveira DM, Silva IC, Poças-Fonseca MJ, Azevedo RB. Comparison of stem cell properties of cells isolated from normal and inflamed dental pulps.Int Endod J. 2012;45(12):1080-1090.
76. Kim BC, Bae H, Kwon IK, Lee EJ, Park JH, Khademhosseini A, Hwang YS. Osteoblastic/cementoblastic and neural differentiation of dental stem cells and their applications to tissue engineering and regenerative medicine. Tissue Eng Part B Rev. 2012;18(3):235-244.
77. Markowitz K1, Moynihan M, Liu M, Kim S. Biologic properties of eugenol and zinc oxide-eugenol. A clinically oriented review. Oral Surg Oral Med Oral Pathol. 1992;73(6):729-737.
校內:2024-12-31公開