簡易檢索 / 詳目顯示

研究生: 江倪全
Chiang-Ni, Chuan
論文名稱: A 群鏈球菌熱原性外毒素 B 之致病機制及其在轉錄層次所受到之調控
Transcriptional Regulation and Pathogenesis Mechanisms for Streptococcal Pyrogenic Exotoxin B of Streptococcus pyogenes
指導教授: 吳俊忠
Wu, Jiunn-Jong
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 124
中文關鍵詞: 致病機制熱原性外毒素 BA 群鏈球菌
外文關鍵詞: regulation, pathogenesis, covR, speB, group A streptococcus
相關次數: 點閱:68下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A 群鏈球菌為革蘭氏陽性人類致病菌,能引起細菌性咽喉炎以及具有高致死率之壞死性肌膜炎和鏈球菌毒性症候群等疾病。熱原性外毒素 B (SpeB) 為 A 群鏈球菌重要之毒力因子之一,目前已知和感染時的組織損傷,細菌逃脫被免疫反應所清除,及細菌存活於血液中有關。 SpeB 為半胱胺酸蛋白,能切除或分解宿主之胞外基質、免疫球蛋白、補體、甚至細菌菌體表面之附著因子其及分泌之蛋白質。在 A 群鏈球菌中,SpeB 的表現侷限於生長曲線之靜止期並由許多轉錄調控因子所調控。然而,控制 SpeB 表現的調控網路到目前為止尚未被詳細的描述。本論文有兩個主要的研究主題,包括分析 SpeB 在 A 群鏈球菌存活於人類血液中所扮演的角色,以及 A 群鏈球菌調控 SpeB 表現之調控網路。我們發現野生株在全血中的存活率為 speB 突變株之 5-20 倍。進一步的分析發現 SpeB 可能會透過造成多核性白血球之粒腺體損傷而使得多核性白血球無法有效的清除細菌而讓細菌能存活於全血中以造成進一步的感染。另一方面,我們藉由分析 SpeB 調控因子在不表現 SpeB 臨床菌株中之表現模式,以及 Rgg (SpeB 正向調控因子) 和 CovR (SpeB 負向調控因子) 在不同生長時期之表現以了解 SpeB 之調控網路。結果顯示,不表現 SpeB 臨床菌株會喪失表現 speB RNA 及驅動 speB 啟動子的能力,暗示 SpeB 的調控因子扮演重要的角色,進一步的分析顯示目前已知的 SpeB 調控因子之表現模式在正常表現 SpeB 或不表現 SpeB 之菌株間並沒有顯著的差異。在分析 rgg 及 covR 表現模式方面,雖然所有已分析的菌株之 rgg 均在靜止期的早期表現,然而 covR 的表現模式在不同菌株間卻不相同。有 52% 已分析菌株之 covR 在對數期表現,而有 48% 之菌株之 covR 則在靜止期的早期表現。進一步的分析顯示,covR 在靜止期的早期表現之菌株有較好的細菌生長活性、較早的 SpeB 表現、及與 A 群鏈球菌分型 emm1/ST28 有顯著的相關性,而 covR 在對數期表現的菌株則無此現象。除此之外,我們也發現在 covR 基因下游有二段轉錄中止序列能中止 covR/S operon (2.5-kb) 的轉錄而產生 covR monocistronic transcripts (1.0-kb 及 0.8-kb)。綜合前述,本研究的結果顯示在 A 群鏈球菌感染時,SpeB 可能會透過造成多核性白血球粒腺體損傷以逃避其清除;此外,SpeB 調控因子分析的結果顯示,A 群鏈球菌不僅具有複雜的 SpeB 調控網路,而且在不同菌株間也可能有不同的調控機制。

    Group A streptococcus (GAS) is a gram-positive human pathogen responsible for wide spectrum of diseases including pharyngitis, necrotizing fasciitis and streptococcal toxic shock syndrome. Streptococcal pyrogenic exotoxin B (SpeB) is one of the important virulence factors of GAS. It is a cysteine protease which cleaves or degrades host extracellular matrix, immunoglobulins, complement components, and even GAS surface adhesins and secreted proteins. SpeB expression is restricted at the stationary phase of growth and tightly regulated by GAS through several transcriptional regulators. However, the regulatory network of SpeB is unclear. In this thesis, we analyzed the effects of SpeB for GAS survival in human whole blood and the regulatory network of SpeB. We showed the speB mutants have five to twenty-fold decreases of survival in human whole blood when compared with the wild-type strains. Further analysis showed that SpeB might cause the polymorphonuclear (PMN) cells mitochondria damage to inactivate PMN cells phagocytic activity. To clarify the regulatory network of SpeB in GAS, we analyzed the SpeB regulatory genes expression pattern in clinical isolated SpeB non-secretors and the temporal expression during growth phases of two important SpeB regulators, Rgg (positive regulator of SpeB) and CovR (negative regulator of SpeB). Our results showed SpeB non-secretors cannot transcribe speB and drive speB promoter, suggesting that the transcriptional regulators were involved. However, RNA expression pattern of five well-known SpeB transcriptional regulators did not have the significant difference when compared with that of the SpeB secretors. In other aspect, the Northern hybridization analysis showed that rgg expression is restricted at early-stationary phase, whereas, covR expression pattern during bacterial growth is different among GAS strains. We found 58% and 42% of analyzed strains expressed covR at exponential phase and early-stationary phase of growth, respectively. Further analysis showed that strains with covR expression at early-stationary phase are correlated with better growth activity, earlier SpeB expression, and emm1/ST28 type, but not strains with covR expression at exponential phase of growth. In addition, we also identified two RNA transcriptional terminator sequences downstream of the covR gene which can terminate covR/S operon (2.5-kb) transcription and generate covR monocistronic transcripts (1-kb and 0.8-kb). In conclusion, our results showed SpeB might cause PMN cell’s mitochondria damage to help bacteria evading from immune clearance and also revealed the complexity and diversity of the SpeB regulatory network in GAS.

    Table of contents 中文摘要 ······················· ··· i Abstract ··························· ii 致謝 ···························· iii Table of contents ······················ iv List of tables ······························ viii List of figures ························ ix Abbreviations ························ xi 1. Introduction························ 1 2. Materials and methods 2.1. Bacterial strains, plasmids, and culture conditions ······· 18 2.2. Cell lines and cell culture conditions ·············18 2.3. DNA manipulations 2.3.1. E. coli 2.3.1.1. Plasmid DNA extraction ················18 2.3.1.2. Competent cell preparation ···············19 2.3.1.3. Heat-shock transformation················19 2.3.2. Group A streptococcus 2.3.2.1. Genomic DNA extraction ················20 2.3.2.2. Plasmid DNA extraction ·················20 2.3.2.3. Competent cell preparation ···············20 2.3.2.4. Electroporation ····················21 2.3.2.5. Southern hybridization 2.3.2.5.1. DNA digestion and electrophoresis ············21 2.3.2.5.2. DNA transfer ·····················21 2.3.2.5.3. Hybridization ·····················22 2.4. RNA manipulations 2.4.1. Reverse transcription polymerase chain reaction (RT-PCR) ····23 2.4.2. E. coli 2.4.2.1. RNA extraction ····················23 2.4.3. Group A streptococcus 2.4.3.1. RNA extraction ····················23 2.4.3.2. Northern hybridization and RNA dot blot analysis 2.4.3.2.1. RNA preparation ···················24 2.4.3.2.2. Agarose-formaldehyde gel preparation ··········24 2.4.3.2.3. RNA electrophoresis and transfer ············24 2.4.3.3. RNA stability assay ··················25 2.4.3.4. RNA transcriptional terminator sequences and RNA secondary structure predictions ·····················25 2.5. Molecular typing of group A streptococcus ··········25 2.6. Protein manipulations 2.6.1. Sodium dodecyl sulfate polyacrylamide (SDS-PAGE) electrophoresis ·······························26 2.6.2. Protein concentration measurement ·············26 2.6.3. Western hybridization ··················27 2.6.4. Recombinant CovR protein purification ···········27 2.6.5. Mouse anti-CovR serum preparation ············27 2.6.6. Group A streptococcus total protein extraction ········28 2.6.7. Culture supernatant total protein precipitation ········28 2.7. Group A streptococcus phenotypic characteristics 2.7.1. Growth curve ·····················29 2.7.2. Hyaluronic acid capsule content ··············29 2.7.3. Promoter activity- Luciferase activity assay ·········29 2.7.4. SpeB protease activity 2.7.4.1. Skim-milk agar assay ··················30 2.7.4.2. Azocasein assay ····················30 2.8. Cell manipulations 2.8.1. Phagocytosis assay ···················30 2.8.2. Determination of polymorphonuclear (PMN) cell numbers ····31 2.8.3. Measurement of PMN cell metabolic activity ·········31 2.8.4. Measurement of mitochondria integrity 2.8.4.1 Measurement of mitochondria dehydrogenase activity ·····31 2.8.4.2. Measurement of mitochondria membrane potential ······32 2.9. Statistics ························32 3. Results 3.1. SpeB prevents phagocytosis of group A streptococcus via causing mitochondria damage of polymorphonuclear cells 3.1.1. Confirmation of the speB isogenic mutant ··········33 3.1.2. SpeB is important for group A streptococcus survival in human whole blood ·························33 3.1.3. SpeB inactivates the metabolic activity of polymorphonuclear (PMN) cells ····························34 3.1.4. SpeB causes mitochondria damage in PMN cells ·······34 3.1.5. SpeB expression in A-549 cells ··············35 3.2. Molecular characterization of SpeB non-secretor group A streptococci 3.2.1. Microbiological characterization of SpeB non-secretor isolates ··35 3.2.2. SpeB non-secretors have no speB transcription ········ 36 3.2.3. The nucleotide sequence analysis of the speB gene in SpeB non-secretors ························36 3.2.4. SpeB non-secretors cannot drive the speB promoter ······36 3.2.5. The RNA transcription of rgg, covR, mga, pel, and opp in SpeB non-secretors ························37 3.3. Temporal regulation of SpeB 3.3.1. rgg and covR RNA expression pattern during bacterial growth phases ··························· 37 3.3.2. covR expression in wild-type and rgg over-expression strains ·· 38 3.4. The transcriptional terminator sequences of the covR gene terminate covR/S operon transcription and generate monocistronic covR transcripts 3.4.1. Analysis of RNA transcript of the covR/S operon ·······39 3.4.2. Transcriptional terminator sequences prediction ·······39 3.4.3. Determination of the 3’ transcription terminators of the covR gene·····························40 3.4.4. The terminator sequences terminate covR/S operon transcription in E. coli background ······················· 40 3.5. Terminator sequences have potential regulatory activity 3.5.1. Expression of terminator sequence 1-2 extrachromosomally affects the native covR/S operon transcription ··············41 3.5.2. Expression of the covR gene with terminator sequence 1-2 represses bacterial growth activity ····················41 3.5.3. Mutation of the covR promoter ribosome-binding site and covR gene start codon did not abolish CovR protein expression ········42 3.5.4. CovR protein expression is required for growth activity repression··························42 3.5.5. SpeB is not regulated by CovR in NZ131 ··········43 3.6. Two covR expression patterns are associated with bacterial growth activity to modulate virulence genes expression in group A streptococcus 3.6.1. Two different covR expression patterns are presented among group A streptococci ························43 3.6.2. Different covR expression pattern is correlated with different bacterial growth activity ························44 3.6.3. The speB, sagA, emm, and scpA genes expression in covR-E and covR-S strains ························44 3.6.4. Multi locus sequence typing (MLST) and pulsed field gel electrophoresis (PFGE) dendrogram analysis ············45 4. Discussion ························47 5. References ························ 59 6. Tables ··························80 7. Figures ·························89 8. Appendix 8.1. Reference figures ····················116 8.2. Media and Solutions ···················118 8.3. Chemicals and Reagents ·················122 9. 自述 ··························124 List of Tables Table 1. ·························· 80 The primers used in this study Table 2. ·························· 82 The vectors and recombinant plasmids used in this study Table 3. ·························· 84 The group A streptococcus strains used in this study Table 4. ·························· 85 The emm type, presence of speB gene, speB RNA expression, and resulting diseases of SpeB non-secretors Table 5. ·························· 86 The polymorphic sites within the 939 bp upstream of non-coding region and 1197 bp coding region of the speB gene Table 6. ·························· 87 The emm type, PFGE type, covR expression pattern, and resulting diseases of group A streptococcus isolates List of Figures Fig. 1 ··························· 89 Construction of SW117 speB isogenic mutant. Fig. 2 ··························· 90 The effects of SpeB on the survival of wild-type strains and speB mutants in human whole blood and plasma. Fig. 3 ··························· 91 The metabolic activity of PMN cells infected by wild-type strain and speB mutant. Fig. 4 ··························· 92 The mitochondria integrity of r-SpeB or r-C192S treated PMN cells. Fig. 5 ··························· 93 The speB expression pattern of NZ131 in A-549 cell and culture broth. Fig. 6 ··························· 94 The speB expression of SpeB non-secretors in normal or acid broth culture condition. Fig. 7 ··························· 95 The speB promoter activity of SpeB non-secretors. Fig. 8 ··························· 96 The expression levels of speB transcriptional regulators in SpeB non-secretors. Fig. 9 ··························· 98 Temporal expression of rgg, covR, and speB in A-20, SW117, and NZ131. Fig. 10 ··························· 99 covR/S transcription in rgg over-expression strains. Fig. 11 ·························· 100 Detection of covR/S operon mRNA in A-20, SF370, SW117, and NZ131. Fig. 12 ·························· 101 The location of the predicted rho-independent terminator sequences of covR. Fig. 13 ·························· 102 The terminator activity of the predicted terminator sequences downstream of covR. Fig. 14 ·························· 103 The terminator activity of the predicted terminator sequences of covR in E. coli background. Fig. 15 ·························· 104 Detection of the covR/S operon mRNA in NZ131 with over-expression of terminator sequences. Fig. 16 ·························· 105 The growth curves of covR mutant and CovR complementation strains. Fig. 17 ·························· 106 CovR protein expression and the growth curve of SW619 and SW620. Fig. 18 ·························· 107 CovR protein expression and the growth curve of SW630, SW632 and SW633. Fig. 19 ······························ 108 SpeB expression in NZ131, SW616, SW619 and SW620. Fig. 20 ·························· 109 The covR expression patterns among group A streptococci. Fig. 21 ······························ 111 The growth curves of strains with different covR expression patterns. Fig. 22 ·························· 112 The expression patterns of speB, sagA, emm, and scpA in SF370 and NZ131. Fig. 23 ·························· 113 The expression patterns of speB, sagA, emm, and scpA in A-20 and GAS516. Fig. 24 ·························· 114 MLST-based dendrogram of group A streptococcus isolates and their ST and emm types. Fig. 25 ······························ 115 Dendrogram and PFGE patterns of SmaI digested chromosomal DNA of group A streptococcus isolates.

    Abbot, E. L., W. D. Smith, G. P. Siou, C. Chiriboga, R. J. Smith, J. A. Wilson, B. H. Hirst & M. A. Kehoe. Pili mediate specific adhesion of Streptococcus pyogenes to human tonsil and skin. Cell. Microbiol. 9: 1822-1833, 2007.

    Akesson, P., A. G. Sjholm & L. Bjrck. Protein SIC, a novel extracellular protein of Streptococcus pyogenes interfering with complement function. J. Biol. Chem. 271: 1081-1088, 1996.

    Alouf, J. E. & H. Mller-Alouf. Staphylococcal and streptococcal superantigens: molecular, biological and clinical aspects. Int. J. Med. Microbiol. 292: 429-440, 2003.

    Andr, I., J. Persson, A. M. Blom, T. Drakenberg, G. Lindahl & S. Linse. Streptococcal M protein: Structural studies of the hypervariable region, free and bound to human C4BP. Biochemistry 45: 4559-4568, 2006.

    Andersson, G., K. Mclcer, L. O. Hedn & J. R. Scott. Complementation of divergent mga genes in group A streptococcus. Gene 175: 77-81, 1996.

    Aziz, R. K., M. J. Pabst, A. Jeng, R. Kansal, D. E. Low, V. Nizet & M. Kotb. Invasive M1T1 group A streptococcus undergoes a phase-shift in vivo to prevent proteolytic degradation of multiple virulence factors by SpeB. Mol. Microbiol. 51: 123-134, 2004.

    Aziz, R. K., R. A. Edwards, W. W. Taylor, D. E. Low, A. McGeer, & M. Kotb. Mosaic prophages with horizontally acquired genes account for the emergence and diversification of the globally disseminated M1T1 clone of Streptococcus pyogenes. J. Bacteriol. 187:3311-3318, 2005.

    Barnett, T. C., J. V. Bugrysheva & J. R. Scott. Role of mRNA stability in growth phase regulation of gene expression in the group A streptococcus. J. Bacteriol. 189: 1866-1873, 2007.

    Beachey, E. H. & I. Ofek. Epithelial cell binding of group A streptococci by lipoteichoic acid on fimbriae denuded of M protein. J. Exp. Med. 143: 759-771, 1976.

    Beachey, E. H., G. H. Stollerman, E. Y. Chiang, T. M. Chiang, J. M. Seyer & A. H. Kang. Purification and properties of M protein extracted from group A streptococci with pepsin: covalent structure of the amino terminal region of type 24 M antigen. J. Exp. Med. 145: 1469-1483, 1977.

    Beckert, S., B. Kreikemeyer & A. Podbielski. Group A streptococcal rofA gene is involved in the control of several virulence genes and eukaryotic cell attachment and internalization. Infect. Immun. 69: 534-537, 2001.

    Berge, A. & L. Bjrck. Streptococcal cysteine proteinase releases biologically active fragments of streptococcal surface proteins. J. Biol. Chem. 270: 9862-9867, 1995.

    Berggrd, K., E. Johnsson, E. Morfeldt, J. Persson, M. Stlhammar-Carlemalm & G. Lindahl. Binding of human C4BP to the hypervariable region of M protein: a molecular mechanism of phagocytosis resistance in Streptococcus pyogenes. Mol. Microbiol. 42: 539-551, 2001.

    Bernish, B. & I. van de Rijn. Characterization of a two-component system in Streptococcus pyogenes which is involved in regulation of hyaluronic acid production. J. Biol. Chem. 274: 4786-4793, 1999.

    Bisno, A. L., M. O. Brito & C. M. Collins. Molecular basis of group A streptococcal virulence. Lancet Infect. Dis. 3: 191-200, 2003.

    Brantl, S. Antisense-RNA regulation and RNA interference. Biochim. Biophys. Acta. 1575: 15-25, 2002.

    Brooks, G. F., J. S. Butel & S. A. Morse, Jawetz, Melnick, & Adelberg's Medical Microbiology, p. 203-211. Prentice Hall International Inc, 1998.

    Broudy, T. B., V. Pancholi & V. A. Fischetti. The in vitro interaction of Streptococcus pyogenes with human pharyngeal cells induces a phage-encoded extracellular DNase. Infect. Immun. 70: 2805-2811, 2002.

    Buchanan, J. T., A. J. Simpson, R. K. Aziz, G. Y. Liu, S. A. Kristian, M. Kotb, J. Feramisco & V. Nizet. DNase expression allows the pathogen group A streptococcus to escape killing in neutrophil extracellular traps. Curr. Biol. 16: 396-400, 2006.

    Caparon, M. G., R. T. Geist, J. Perez-Casal & J. R. Scott. Environmental regulation of virulence in group A streptococci: transcription of the gene encoding M protein is stimulated by carbon dioxide. J. Bacteriol. 174: 5693-5701, 1992.

    Caparon, M. G., D. S. Stephens, A. Olsn & J. R. Scott. Role of M protein in adherence of group A streptococci. Infect. Immun. 59: 1811-1817, 1991.

    Carapetis, J. R., A. C. Steer, E. K. Mulholland & M. Weber. The global burden of group A streptococcal diseases. Lancet Infect. Dis. 5: 685-694, 2005.

    Carlsson, F., C. Sandin & G. Lindahl. Human fibrinogen bound to Streptococcus pyogenes M protein inhibits complement deposition via the classical pathway. Mol. Microbiol. 56: 28-39, 2005.

    Carmi, O. A., G. S. Stewart, S. Ulitzur & J. Kuhn. Use of bacterial luciferase to establish a promoter probe vehicle capable of nondestructive real-time analysis of gene expression in Bacillus spp. J. Bacteriol. 169: 2165-2170, 1987.

    Carrio, J. A., C. Silva-Costa, J. Melo-Cristino, F. R. Pinto, H. de Lencastre, J. S. Almeida, & M. Ramirez. Illustration of a common framework for relating multiple typing methods by application to macrolide-resistant Streptococcus pyogenes. J. Clin. Microbiol. 44:2524-2532, 2006.

    Chatellier, S., N. Ihendyane, R. G. Kansal, F. Khambaty, H. Basma, A. Norrby-Teglund, D. E. Low, A. McGeer, & M. Kotb. Genetic relatedness and superantigen expression in group A streptococcus serotype M1 isolates from patients with severe and nonsevere invasive diseases. Infect. Immun. 68:3523-3534, 2000.

    Chang, C. W., W. H. Tsai, W. J. Chuang, Y. S. Lin, J. J. Wu, C. C. Liu, P. J. Tsai & M. T. Lin. The fate of SpeB after internalization and its implication in SpeB-induced apoptosis. J. Biomed. Sci. 14: 419-427, 2007.

    Chaussee, M. S., J. Liu, D. L. Stevens & J. J. Ferretti. Genetic and phenotypic diversity among isolates of Streptococcus pyogenes from invasive infections. J. Infect. Dis. 173: 901-908, 1996.

    Chaussee, M. S., E. R. Phillips & J. J. Ferretti. Temporal production of streptococcal erythrogenic toxin B (streptococcal cysteine proteinase) in response to nutrient depletion. Infect. Immun. 65: 1956-1959, 1997.

    Chaussee, M. S., G. L. Sylva, D. E. Sturdevant, L. M. Smoot, M. R. Graham, R. O. Watson & J. M. Musser. Rgg influences the expression of multiple regulatory loci to coregulate virulence factor expression in Streptococcus pyogenes. Infect. Immun. 70: 762-770, 2002.

    Chen, Y. Y., C. T. Huang, S. M. Yao, Y. C. Chang, P. W. Shen, C. Y. Chou & S. Y. Li. Molecular epidemiology of group A streptococcus causing scarlet fever in northern Taiwan, 2001-2002. Diagn. Microbiol. Infect. Dis. 58: 289-295, 2007.

    Chiou, C. S., T. L. Liao, T. H. Wang, H. L. Chang, J. C. Liao & C. C. Li. Epidemiology and molecular characterization of Streptococcus pyogenes recovered from scarlet fever patients in central Taiwan from 1996 to 1999. J. Clin. Microbiol. 42: 3998-4006, 2004.

    Churchward, G. The two faces of Janus: virulence gene regulation by CovR/S in group A streptococci. Mol. Microbiol. 64: 34-41, 2007.

    Cleary, P. P., U. Prahbu, J. B. Dale, D. E. Wexler & J. Handley. Streptococcal C5a peptidase is a highly specific endopeptidase. Infect. Immun. 60: 5219-5223, 1992.

    Collin, M., M. D. Svensson, A. G. Sjholm, J. C. Jensenius, U. Sjbring & A. Olsn. EndoS and SpeB from Streptococcus pyogenes inhibit immunoglobulin-mediated opsonophagocytosis. Infect. Immun. 70: 6646-6651, 2002.

    Courtney, H. S., D. L. Hasty, J. B. Dale & T. P. Poirier. A 28-kilodalton fibronectin-binding protein of group A streptococci. Curr. Microbiol. 25: 245-250, 1992.

    Cunningham, M. W. Pathogenesis of group A streptococcal infections. Clin. Microbiol. Rev. 13: 470-511, 2000.

    Cywes, C. & M. R. Wessels. Group A streptococcus tissue invasion by CD44-mediated cell signaling. Nature 414: 648-652, 2001.

    Dalton, T. L. & J. R. Scott. CovS inactivates CovR and is required for growth under conditions of general stress in Streptococcus pyogenes. J. Bacteriol. 186: 3928-3937, 2004.

    Dinkla, K., I. Sastalla, A. W. Godehardt, N. Janze, G. S. Chhatwal, M. Rohde & E. Medina. Upregulation of capsule enables Streptococcus pyogenes to evade immune recognition by antigen-specific antibodies directed to the G-related α2-macroglobulin-binding protein GRAB located on the bacterial surface. Microbes Infect. 9: 922-931, 2007.

    Dougherty, B. A. & I. van de Rijn. Molecular characterization of hasA from an operon required for hyaluronic acid synthesis in group A streptococci. J. Biol. Chem. 269: 169-175, 1994.

    Dramsi, S., P. Trieu-Cuot & H. Bierne. Sorting sortases: a nomenclature proposal for the various sortases of Gram-positive bacteria. Res. Microbiol. 156: 289-297, 2005.

    Ellen, R. P. & R. J. Gibbons. M protein-associated adherence of Streptococcus pyogenes to epithelial surfaces: prerequisite for virulence. Infect. Immun. 5: 826-830, 1972.

    Engleberg, N. C., A. Heath, A. Miller, C. Rivera & V. J. DiRita. Spontaneous mutations in the CsrRS two-component regulatory system of Streptococcus pyogenes result in enhanced virulence in a murine model of skin and soft tissue infection. J. Infect. Dis. 183: 1043-1054, 2001.

    Enright, M. C. & B. G. Spratt. Multilocus sequence typing. Trends Microbiol. 7:482-487, 1999.

    Eriksson, A. & M. Norgren. Cleavage of antigen-bound immunoglobulin G by SpeB contributes to streptococcal persistence in opsonizing blood. Infect. Immun. 71: 211-217, 2003.

    Eriksson, B. K., J. Andersson, S. E. Holm & M. Norgren. Invasive group A streptococcal infections: T1M1 isolates expressing pyrogenic exotoxins A and B in combination with selective lack of toxin-neutralizing antibodies are associated with increased risk of streptococcal toxic shock syndrome. J. Infect. Dis. 180: 410-418, 1999.

    Eyal, O., J. Jadoun, A. Bitler, E. Skutelski & S. Sela. Role of M3 protein in the adherence and internalization of an invasive Streptococcus pyogenes strain by epithelial cells. FEMS Immunol. Med. Microbiol. 38: 205-213, 2003.

    Federle, M. J., K. S. McIver & J. R. Scott. A response regulator that represses transcription of several virulence operons in the group A streptococcus. J. Bacteriol. 181: 3649-3657, 1999.

    Federle, M. J. & J. R. Scott. Identification of binding sites for the group A streptococcal global regulator CovR. Mol. Microbiol. 43: 1161-1172, 2002.

    Feil, E. J., E. C. Holmes, D. E. Bessen, M. S. Chan, N. P. Day, M. C. Enright, R. Goldstein, D. W. Hood, A. Kalia, C. E. Moore, J. Zhou & B. G. Spratt. Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. Proc. Natl. Acad. Sci. USA 98:182-187, 2001.

    Fernie-King, B. A., D. J. Seilly, C. Willers, R. Wrzner, A. Davies & P. J. Lachmann. Streptococcal inhibitor of complement (SIC) inhibits the membrane attack complex by preventing uptake of C567 onto cell membranes. Immunology 103: 390-398, 2001.

    Ferretti, J. J., W. M. McShan, D. Ajdic, D. J. Savic, G. Savic, K. Lyon, C. Primeaux, S. Sezate, A. N. Suvorov, S. Kenton, H. S. Lai, S. P. Lin, Y. Qian, H. G. Jia, F. Z. Najar, Q. Ren, H. Zhu, L. Song, J. White, X. Yuan, S. W. Clifton, B. A. Roe & R. McLaughlin. Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc. Natl. Acad. Sci. USA 98: 4658-4663, 2001.

    Fischetti, V. A. Streptococcal M protein: molecular design and biological behavior. Clin. Microbiol. Rev. 2: 285-314, 1989.

    Fischetti, V. A. Streptococcal M protein. Sci. Am. 264: 58-65, 1991.

    Fries, A., M. Ramirez, J. Melo-Cristino & Portuguese Group for the Study of Streptococcal Infections. Nonoutbreak surveillance of group A streptococci causing invasive disease in Portugal identified internationally disseminated clones among members of a genetically heterogeneous population. J. Clin. Microbiol. 45:2044-2047, 2007.

    Frick, I. M., A. Schmidtchen & U. Sjbring. Interactions between M proteins of Streptococcus pyogenes and glycosaminoglycans promote bacterial adhesion to host cells. Eur. J. Biochem. 270: 2303-2311, 2003.

    Gao, J., A. A. Gusa, J. R. Scott & G. Churchward. Binding of the global response regulator protein CovR to the sag promoter of Streptococcus pyogenes reveals a new mode of CovR-DNA interaction. J. Biol. Chem. 280: 38948-38956, 2005.

    Graham, M. R., L. M. Smoot, C. A. Migliaccio, K. Virtaneva, D. E. Sturdevant, S. F. Porcella, M. J. Federle, G. J. Adams, J. R. Scott & J. M. Musser. Virulence control in group A streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc. Natl. Acad. Sci. USA 99: 13855-13860, 2002.

    Graham, M. R., K. Virtaneva, S. F. Porcella, W. T. Barry, B. B. Gowen, C. R. Johnson, F. A. Wright & J. M. Musser. Group A streptococcus transcriptome dynamics during growth in human blood reveals bacterial adaptive and survival strategies. Am. J. Pathol. 166: 455-465, 2005.

    Granok, A. B., D. Parsonage, R. P. Ross & M. G. Caparon. The RofA binding site in Streptococcus pyogenes is utilized in multiple transcriptional pathways. J. Bacteriol. 182: 1529-1540, 2000.

    Greco, R., L. De Martino, G. Donnarumma, M. P. Conte, L. Seganti & P. Valenti. Invasion of cultured human cells by Streptococcus pyogenes. Res. Microbiol. 146: 551-560, 1995.

    Gryllos, I., R. Grifantini, A. Colaprico, S. Jiang, E. Deforce, A. Hakansson, J. L. Telford, G. Grandi & M. R. Wessels. Mg++ signaling defines the group A streptococcal CsrRS (CovRS) regulon. Mol. Microbiol. 65: 671-683, 2007.

    Gryllos, I., J. C. Levin & M. R. Wessels. The CsrR/CsrS two-component system of group A streptococcus responds to environmental Mg++. Proc. Natl. Acad. Sci. USA 100: 4227-4232, 2003.

    Gusa, A. A. & J. R. Scott. The CovR response regulator of group A streptococcus (GAS) acts directly to repress its own promoter. Mol. Microbiol. 56: 1195-1207, 2005.

    Hanski, E., P. A. Horwitz & M. G. Caparon. Expression of protein F, the fibronectin-binding protein of Streptococcus pyogenes JRS4, in heterologous streptococcal and enterococcal strains promotes their adherence to respiratory epithelial cells. Infect. Immun. 60: 5119-5125, 1992.

    Hasty, D. L. & H. S. Courtney. Group A streptococcal adhesion: all of the theories are correct. In I. Kahane and I. Ofek, New York, 1996.

    Heath, A., V. J. DiRita, N. L. Barg & N. C. Engleberg. A two-component regulatory system, CsrR-CsrS, represses expression of three Streptococcus pyogenes virulence factors, hyaluronic acid capsule, streptolysin S, and pyrogenic exotoxin B. Infect. Immun. 67: 5298-5305, 1999.

    Herwald, H., M. Collin, W. Mller-Esterl & L. Bjrck. Streptococcal cysteine proteinase releases kinins: a virulence mechanism. J. Exp. Med. 184: 665-673, 1996.

    Hollingshead, S. K., V. A. Fischetti & J. R. Scott. A highly conserved region present in transcripts encoding heterologous M proteins of group A streptococci. Infect. Immun. 55: 3237-3239, 1987.

    Hondorp, E. R. & K. S. McIver. The Mga virulence regulon: infection where the grass is greener. Mol. Microbiol. 66: 1056-1065, 2007.

    Hsueh, P. R., J. J. Wu, P. J. Tsai, J. W. Liu, Y. C. Chuang & K. T. Luh. Invasive group A streptococcal disease in Taiwan is not associated with the presence of streptococcal pyrogenic exotoxin genes. Clin. Infect. Dis. 26: 584-589, 1998.

    Jadoun, J., V. Ozeri, E. Burstein, E. Skutelsky, E. Hanski & S. Sela. Protein F1 is required for efficient entry of Streptococcus pyogenes into epithelial cells. J. Infect. Dis. 178: 147-158, 1998.

    Ji, Y., B. Carlson, A. Kondagunta & P. P. Cleary. Intranasal immunization with C5a peptidase prevents nasopharyngeal colonization of mice by the group A streptococcus. Infect. Immun. 65: 2080-2087, 1997.

    Ji, Y., L. McLandsborough, A. Kondagunta & P. P. Cleary. C5a peptidase alters clearance and trafficking of group A streptococci by infected mice. Infect. Immun. 64: 503-510, 1996.

    Johnsson, E., K. Berggrd, H. Kotarsky, J. Hellwage, P. F. Zipfel, U. Sjbring & G. Lindahl. Role of the hypervariable region in streptococcal M proteins: binding of a human complement inhibitor. J. Immunol. 161: 4894-4901, 1998.

    Kalia, A., B. G. Spratt, M. C. Enright & D. E. Bessen. Influence of recombination and niche separation on the population genetic structure of the pathogen Streptococcus pyogenes. Infect. Immun. 70:1971-1983, 2002.

    Kansal, R. G., A. McGeer, D. E. Low, A. Norrby-Teglund & M. Kotb. Inverse relation between disease severity and expression of the streptococcal cysteine protease, SpeB, among clonal M1T1 isolates recovered from invasive group A streptococcal infection cases. Infect. Immun. 68: 6362-6369, 2000.

    Kao, C. H., P. Y. Chen, F. L. Huang, C. W. Chen, C. S. Chi, Y. H. Lin, C. Y. Shih, B. S. Hu, C. R. Li, J. S. Ma, Y. J. Lau, K. C. Lu & H. W. Yu. Clinical and genetic analysis of invasive and non-invasive group A streptococcal infections in central Taiwan. J. Microbiol. Immunol. Infect. 38: 105-111, 2005.

    Kapur, V., M. W. Majesky, L. L. Li, R. A. Black & J. M. Musser. Cleavage of interleukin 1 beta (IL-1 beta) precursor to produce active IL-1 beta by a conserved extracellular cysteine protease from Streptococcus pyogenes. Proc. Natl. Acad. Sci. USA 90: 7676-7680, 1993a.

    Kapur, V., S. Topouzis, M. W. Majesky, L. L. Li, M. R. Hamrick, R. J. Hamill, J. M. Patti & J. M. Musser. A conserved Streptococcus pyogenes extracellular cysteine protease cleaves human fibronectin and degrades vitronectin. Microb. Pathog. 15: 327-346, 1993b.

    Kazmi, S. U., R. Kansal, R. K. Aziz, M. Hooshdaran, A. Norrby-Teglund, D. E. Low, A. B. Halim & M. Kotb, (2001) Reciprocal, temporal expression of SpeA and SpeB by invasive M1T1 group A streptococcal isolates in vivo. Infect. Immun. 69: 4988-4995.

    Kotb, M. Bacterial pyrogenic exotoxins as superantigens. Clin. Microbiol. Rev. 8: 411-426, 1995.

    Kreikemeyer, B., S. Beckert, A. Braun-Kiewnick & A. Podbielski. Group A streptococcal RofA-type global regulators exhibit a strain-specific genomic presence and regulation pattern. Microbiology 148: 1501-1511, 2002.

    Kreikemeyer, B., M. D. Boyle, B. A. Buttaro, M. Heinemann & A. Podbielski. Group A streptococcal growth phase-associated virulence factor regulation by a novel operon (Fas) with homologies to two-component-type regulators requires a small RNA molecule. Mol. Microbiol. 39: 392-406, 2001.

    Kreikemeyer, B., K. S. McIver & A. Podbielski. Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen-host interactions. Trends Microbiol. 11: 224-232, 2003.

    Kuo, C. F., Y. S. Lin, W. J. Chuang, J. J. Wu & N. Tsao. Degradation of complement 3 by streptococcal pyrogenic exotoxin B inhibits complement activation and neutrophil opsonophagocytosis. Infect. Immun. 76: 1163-1169, 2008.

    Kuo, C. F., J. J. Wu, K. Y. Lin, P. J. Tsai, S. C. Lee, Y. T. Jin, H. Y. Lei & Y. S. Lin. Role of streptococcal pyrogenic exotoxin B in the mouse model of group A streptococcal infection. Infect. Immun. 66: 3931-3935, 1998.

    Kuo, C. F., J. J. Wu, P. J. Tsai, F. J. Kao, H. Y. Lei, M. T. Lin & Y. S. Lin. Streptococcal pyrogenic exotoxin B induces apoptosis and reduces phagocytic activity in U937 cells. Infect. Immun. 67: 126-130, 1999.

    Lancefield, R. C. The antigenic complex of Streptococcus hemolyticus. J. Exp. Med. 47: 9-10, 1928.

    Lancefield, R. C. & V. P. Dole. The properties of T antigen extracted from group A hemolytic streptococci. J. Exp. Med. 84: 449-471, 1946.

    LaPenta, D., C. Rubens, E. Chi & P. P. Cleary. Group A streptococci efficiently invade human respiratory epithelial cells. Proc. Natl. Acad. Sci. USA 91: 12115-12119, 1994.

    Lee, P. K. & P. M. Schlievert. Quantification and toxicity of group A streptococcal pyrogenic exotoxins in an animal model of toxic shock syndrome-like illness. J. Clin. Microbiol. 27: 1890-1892, 1989.

    Lei, B., F. R. DeLeo, N. P. Hoe, M. R. Graham, S. M. Mackie, R. L. Cole, M. Liu, H. R. Hill, D. E. Low, M. J. Federle, J. R. Scott & J. M. Musser. Evasion of human innate and acquired immunity by a bacterial homolog of CD11b that inhibits opsonophagocytosis. Nat. Med. 7: 1298-1305, 2001.

    Levin, J. C. & M. R. Wessels. Identification of csrR/csrS, a genetic locus that regulates hyaluronic acid capsule synthesis in group A streptococcus. Mol. Microbiol. 30: 209-219, 1998.

    Loughman, J. A. & M. Caparon. Regulation of SpeB in Streptococcus pyogenes by pH and NaCl: a model for in vivo gene expression. J. Bacteriol. 188: 399-408, 2006a.

    Loughman, J. A. & M. G. Caparon. A novel adaptation of aldolase regulates virulence in Streptococcus pyogenes. EMBO J. 25: 5414-5422, 2006b.

    Loughman, J. A. & M. G. Caparon. Contribution of invariant residues to the function of Rgg family transcription regulators. J. Bacteriol. 189: 650-655, 2007.

    Lukomski, S., J. E. H. Burns, P. R. Wyde, A. Podbielski, J. Rurangirwa, D. K. Moore-Poveda & J. M. Musser. Genetic inactivation of an extracellular cysteine protease (SpeB) expressed by Streptococcus pyogenes decreases resistance to phagocytosis and dissemination to organs. Infect. Immun. 66: 771-776, 1998.

    Lukomski, S., N. P. Hoe, I. Abdi, J. Rurangirwa, P. Kordari, M. Liu, S. J. Dou, G. G. Adams & J. M. Musser. Nonpolar inactivation of the hypervariable streptococcal inhibitor of complement gene (sic) in serotype M1 Streptococcus pyogenes significantly decreases mouse mucosal colonization. Infect. Immun. 68: 535-542, 2000.

    Lyon, W. R., J. C. Madden, J. C. Levin, J. L. Stein & M. G. Caparon. Mutation of luxS affects growth and virulence factor expression in Streptococcus pyogenes. Mol Microbiol 42: 145-157, 2001.

    Majdalani, N., C. K. Vanderpool & S. Gottesman. Bacterial small RNA regulators. Crit. Rev. Biochem. Mol. Biol. 40: 93-113, 2005.

    Malke, H. & K. Steiner. Control of streptokinase gene expression in group A & C streptococci by two-component regulators. Indian. J. Med. Res. 119 Suppl: 48-156, 2004.

    Manetti, A. G., C. Zingaretti, F. Falugi, S. Capo, M. Bombaci, F. Bagnoli, G. Gambellini, G. Bensi, M. Mora, A. M. Edwards, J. M. Musser, E. A. Graviss, J. L. Telford, G. Grandi & I. Margarit. Streptococcus pyogenes pili promote pharyngeal cell adhesion and biofilm formation. Mol. Microbiol. 64: 968-983, 2007.

    Mangold, M., M. Siller, B. Roppenser, B. J. Vlaminckx, T. A. Penfound, R. Klein, R. Novak, R. P. Novick & E. Charpentier. Synthesis of group A streptococcal virulence factors is controlled by a regulatory RNA molecule. Mol. Microbiol. 53: 1515-1527, 2004.

    Marouni, M. J. & S. Sela. The luxS gene of Streptococcus pyogenes regulates expression of genes that affect internalization by epithelial cells. Infect. Immun. 71: 5633-5639, 2003.

    Marouni, M. J. & S. Sela. Fate of Streptococcus pyogenes and epithelial cells following internalization. J. Med. Microbiol. 53: 1-7, 2004.

    Mass, E., N. Majdalani & S. Gottesman. Regulatory roles for small RNAs in bacteria. Curr. Opin. Microbiol. 6: 120-124, 2003.

    Matsubara, K. & T. Fukaya. The role of superantigens of group A streptococcus and Staphylococcus aureus in Kawasaki disease. Curr. Opin. Infect. Dis. 20: 298-303, 2007.

    McIver, K. S., A. S. Heath & J. R. Scott. Regulation of virulence by environmental signals in group A streptococci: influence of osmolarity, temperature, gas exchange, and iron limitation on emm transcription. Infect. Immun. 63: 4540-4542, 1995.

    Mclver, K. S., & J. R. Scott. Role of mga in growth phase regulation of virulence genes of the group A streptococcus. J. Bacteriol. 179: 5178-5187, 1997.

    Miller, A. A., N. C. Engleberg & V. J. DiRita. Repression of virulence genes by phosphorylation-dependent oligomerization of CsrR at target promoters in S. pyogenes. Mol. Microbiol. 40: 976-990, 2001.

    Molinari, G. & G. S. Chhatwal. Streptococcal invasion. Curr. Opin. Microbiol. 2: 56-61, 1999.

    Molinari, G., M. Rohde, S. R. Talay, G. S. Chhatwal, S. Beckert & A. Podbielski. The role played by the group A streptococcal negative regulator Nra on bacterial interactions with epithelial cells. Mol. Microbiol. 40: 99-114, 2001.

    Muotiala, A., H. Seppl, P. Huovinen & J. Vuopio-Varkila. Molecular comparison of group A streptococci of T1M1 serotype from invasive and noninvasive infections in Finland. J. Infect. Dis. 175:392-399, 1997.

    Nagamune, H., K. Ohkura & H. Ohkuni. Molecular basis of group A streptococcal pyrogenic exotoxin B. J. Infect. Chemother. 11: 1-8, 2005.

    Neely, M. N., W. R. Lyon, D. L. Runft & M. Caparon. Role of RopB in growth phase expression of the SpeB cysteine protease of Streptococcus pyogenes. J. Bacteriol. 185: 5166-5174, 2003.

    Nyberg, P., T. Sakai, K. H. Cho, M. G. Caparon, R. Fssler & L. Bjrck. Interactions with fibronectin attenuate the virulence of Streptococcus pyogenes. EMBO J. 23: 2166-2174, 2004.

    Okada, N., M. K. Liszewski, J. P. Atkinson & M. Caparon. Membrane cofactor protein (CD46) is a keratinocyte receptor for the M protein of the group A streptococcus. Proc. Natl. Acad. Sci. USA 92: 2489-2493, 1995.

    Okada, N., A. P. Pentland, P. Falk & M. G. Caparon. M protein and protein F act as important determinants of cell-specific tropism of Streptococcus pyogenes in skin tissue. J. Clin. Invest. 94: 965-977, 1994.

    Opdyke, J. A., J. R. Scott & C. P. Moran. A secondary RNA polymerase sigma factor from Streptococcus pyogenes. Mol. Microbiol. 42: 495-502, 2001.

    Osterlund, A. & L. Engstrand. Intracellular penetration and survival of Streptococcus pyogenes in respiratory epithelial cells in vitro. Acta Otolaryngol. 115: 685-688, 1995.

    Parry, M. A., X. C. Zhang & I. Bode. Molecular mechanisms of plasminogen activation: bacterial cofactors provide clues. Trends Biochem. Sci. 25: 53-59, 2000.

    Perez-Casal, J., N. Okada, M. G. Caparon & J. R. Scott. Role of the conserved C-repeat region of the M protein of Streptococcus pyogenes. Mol. Microbiol. 15: 907-916, 1995.

    Podbielski, A. & B. A. Leonard. The group A streptococcal dipeptide permease (Dpp) is involved in the uptake of essential amino acids and affects the expression of cysteine protease. Mol. Microbiol. 28: 1323-1334, 1998.

    Podbielski, A., B. Pohl, M. Woischnik, C. Krner, K. H. Schmidt, E. Rozdzinski & B. A. Leonard. Molecular characterization of group A streptococcal (GAS) oligopeptide permease (opp) and its effect on cysteine protease production. Mol. Microbiol. 21: 1087-1099, 1996.

    Podbielski, A., M. Woischnik, B. A. Leonard & K. H. Schmidt. Characterization of nra, a global negative regulator gene in group A streptococci. Mol. Microbiol. 31: 1051-1064, 1999.

    Raeder, R., E. Harokopakis, S. Hollingshead & M. D. Boyle. Absence of SpeB production in virulent large capsular forms of group A streptococcal strain 64. Infect. Immun. 68: 744-751, 2000.

    Raeder, R., M. Woischnik, A. Podbielski & M. D. Boyle. A secreted streptococcal cysteine protease can cleave a surface-expressed M1 protein and alter the immunoglobulin binding properties. Res. Microbiol. 149: 539-548, 1998.

    Roberts, S. A. & J. R. Scott. RivR and the small RNA RivX: the missing links between the CovR regulatory cascade and the Mga regulon. Mol. Microbiol. 66: 1506-1522, 2007.

    Romby, P., F. Vandenesch & E. G. Wagner. The role of RNAs in the regulation of virulence-gene expression. Curr. Opin. Microbiol. 9: 229-236, 2006.

    Sakota, V., A. M, Fry, T. M. Lietman, R. R. Facklam, Z. Li, & B. Beall. Genetically diverse group A streptococci from children in far-western Nepal share high genetic relatedness with isolates from other countries. J. Clin. Microbiol. 44: 2160-2166, 2006.

    Salim, K. Y., J. C. de Azavedo, D. J. Bast & D. G. Cvitkovitch. Role for sagA and siaA in quorum sensing and iron regulation in Streptococcus pyogenes. Infect. Immun. 75: 5011-5017, 2007.

    Sandin, C., F. Carlsson & G. Lindahl. Binding of human plasma proteins to Streptococcus pyogenes M protein determines the location of opsonic and non-opsonic epitopes. Mol. Microbiol. 59: 20-30, 2006.

    Schmidtchen, A., I. M. Frick, E. Andersson, H. Tapper & L. Bjrck. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol. Microbiol. 46: 157-168, 2002.

    Schrager, H. M., S. Albert, C. Cywes, G. J. Dougherty & M. R. Wessels. Hyaluronic acid capsule modulates M protein-mediated adherence and acts as a ligand for attachment of group A streptococcus to CD44 on human keratinocytes. J. Clin. Invest. 101: 1708-1716, 1998.

    Shelburne, S. A., G. C., M. Tokuyama, I. Sitkiewicz, P. Patel & J. M. Musser. Growth characteristics of and virulence factor production by group A streptococcus during cultivation in human saliva. Infect. Immun. 73: 4723-4731, 2005a.

    Shelburne, S. A., P. Sumby, I. Sitkiewicz, C. Granville, F. R. DeLeo & J. M. Musser. Central role of a bacterial two-component gene regulatory system of previously unknown function in pathogen persistence in human saliva. Proc. Natl. Acad. Sci. USA 102: 16037-16042, 2005b.

    Shiseki, M., K. Miwa, Y. Nemoto, H. Kato, J. Suzuki, K. Sekiya, T. Murai, T. Kikuchi, N. Yamashita, K. Totsuka, K. Ooe, Y. Shimizu & T. Uchiyama. Comparison of pathogenic factors expressed by group A streptococci isolated from patients with streptococcal toxic shock syndrome and scarlet fever. Microb. Pathog. 27: 243-252, 1999.

    Simpson, W. A. & E. H. Beachey. Adherence of group A streptococci to fibronectin on oral epithelial cells. Infect. Immun. 39: 275-259, 1983.

    Spratt, B. G. Multilocus sequence typing: molecular typing of bacterial pathogens in an era of rapid DNA sequencing and the internet. Curr. Opin. Microbiol. 2:312-316, 1999.

    Staali, L., S. Bauer, M. Mrgelin, L. Bjrck & H. Tapper. Streptococcus pyogenes bacteria modulate membrane traffic in human neutrophils and selectively inhibit azurophilic granule fusion with phagosomes. Cell. Microbiol. 8: 690-703, 2006.

    Staali, L., M. Mrgelin, L. Bjrck & H. Tapper. Streptococcus pyogenes expressing M and M-like surface proteins are phagocytosed but survive inside human neutrophils. Cell. Microbiol. 5: 253-265, 2003.

    Starr, C. R. & N. C. Engleberg. Role of hyaluronidase in subcutaneous spread and growth of group A streptococcus. Infect. Immun. 74: 40-48, 2006.

    Steiner, K. & H. Malke. Life in protein-rich environments: the relA-independent response of Streptococcus pyogenes to amino acid starvation. Mol. Microbiol. 38: 1004-1016, 2000.

    Steiner, K. & H. Malke. Dual control of streptokinase and streptolysin S production by the covRS and fasCAX two-component regulators in Streptococcus dysgalactiae subsp. equisimilis. Infect. Immun. 70: 3627-3636, 2002.

    Sumby, P., K. D. Barbian, D. J. Gardner, A. R. Whitney, D. M. Welty, R. D. Long, J. R. Bailey, M. J. Parnell, N. P. Hoe, G. G. Adams, F. R. Deleo & J. M. Musser. Extracellular deoxyribonuclease made by group A streptococcus assists pathogenesis by enhancing evasion of the innate immune response. Proc. Natl. Acad. Sci. USA 102: 1679-1684, 2005.

    Sumby, P., A. R. Whitney, E. A. Graviss, F. R. DeLeo & J. M. Musser. Genome-wide analysis of group A streptococci reveals a mutation that modulates global phenotype and disease specificity. PLoS Pathog. 2: e5, 2006.

    Sun, H., U. Ringdahl, J. W. Homeister, W. P. Fay, N. C. Engleberg, A. Y. Yang, L. S. Rozek, X. Wang, U. Sjbring & D. Ginsburg. Plasminogen is a critical host pathogenicity factor for group A streptococcal infection. Science 305: 1283-1286, 2004.

    Surette, M. G., M. B. Miller & B. L. Bassler. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc. Natl. Acad. Sci. USA 96: 1639-1644, 1999.

    Szczypa, K., E. Sadowy, R. Izdebski, L. Strakova, & W. Hryniewicz. Group A streptococci from invasive-disease episodes in Poland are remarkably divergent at the molecular level. J. Clin. Microbiol. 44:3975-3979, 2006.

    Talkington, D. F., B. Schwartz, C. M. Black, J. K. Todd, J. Elliott, R. F. Breiman & R. R. Facklam. Association of phenotypic and genotypic characteristics of invasive Streptococcus pyogenes isolates with clinical components of streptococcal toxic shock syndrome. Infect. Immun. 61: 3369-3374, 1993.

    Terao, Y., Y. Mori, M. Yamaguchi, Y. Shimizu, K. Ooe, S. Hamada & S. Kawabata. Group A streptococcal cysteine protease degrades C3 (C3b) and contributes to evasion of innate immunity. J. Biol. Chem. 283: 6253-6260, 2008.

    Tsai, P. J., C. F. Kuo, K. Y. Lin, Y. S. Lin, H. Y. Lei, F. F. Chen, J. R. Wang & J. J. Wu. Effect of group A streptococcal cysteine protease on invasion of epithelial cells. Infect. Immun. 66: 1460-1466, 1998.

    Unnikrishnan, M., J. Cohen & S. Sriskandan. Growth-phase-dependent expression of virulence factors in an M1T1 clinical isolate of Streptococcus pyogenes. Infect. Immun. 67: 5495-5499, 1999.

    VanHeyningen, T., G. Fogg, D. Yates, E. Hanski & M. Caparon. Adherence and fibronectin binding are environmentally regulated in the group A streptococci. Mol. Microbiol. 9: 1213-1222, 1993.

    Vincents, B., U. von Pawel-Rammingen, L. Bjrck & M. Abrahamson. Enzymatic characterization of the streptococcal endopeptidase, IdeS, reveals that it is a cysteine protease with strict specificity for IgG cleavage due to exosite binding. Biochemistry 43: 15540-15549, 2004.

    Virtaneva, K., M. R. Graham, S. F. Porcella, N. P. Hoe, H. Su, E. A. Graviss, T. J. Gardner, J. E. Allison, W. J. Lemon, J. R. Bailey, M. J. Parnell & J. M. Musser. Group A streptococcus gene expression in humans and cynomolgus macaques with acute pharyngitis. Infect. Immun. 71: 2199-2207, 2003.

    von Pawel-Rammingen, U. & L. Bjrck. IdeS and SpeB: immunoglobulin-degrading cysteine proteinases of Streptococcus pyogenes. Curr. Opin. Microbiol. 6: 50-55, 2003.

    von Pawel-Rammingen, U., B. P. Johansson & L. Bjrck. IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G. EMBO J. 21: 1607-1615, 2002a.

    von Pawel-Rammingen, U., B. P. Johansson, H. Tapper & L. Bjrck. Streptococcus pyogenes and phagocytic killing. Nat. Med. 8: 1044-1045, 2002b.

    Voyich, J. M., D. E. Sturdevant, K. R. Braughton, S. D. Kobayashi, B. Lei, K. Virtaneva, D. W. Dorward, J. M. Musser & F. R. DeLeo. Genome-wide protective response used by group A streptococcus to evade destruction by human polymorphonuclear leukocytes. Proc. Natl. Acad. Sci. USA 100: 1996-2001, 2003.

    Walker, M. J., A. Hollands, M. L. Sanderson-Smith, J. N. Cole, J. K. Kirk, A. Henningham, J. D. McArthur, K. Dinkla, R. K. Aziz, R. G. Kansal, A. J. Simpson, J. T. Buchanan, G. S. Chhatwal, M. Kotb & V. Nizet. DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection. Nat. Med. 13: 981-985, 2007.

    Walker, M. J., J. D. McArthur, F. McKay & M. Ranson. Is plasminogen deployed as a Streptococcus pyogenes virulence factor? Trends Microbiol. 13: 308-313, 2005.

    Wang, C. H., C. Y. Lin, Y. H. Luo, P. J. Tsai, Y. S. Lin, M. T. Lin, W. J. Chuang, C. C. Liu & J. J. Wu. Effects of oligopeptide permease in group A streptococcal infection. Infect. Immun. 73: 2881-2890, 2005.

    Wang, J. R. & M. W. Stinson. M protein mediates streptococcal adhesion to HEp-2 cells. Infect. Immun. 62: 442-448, 1994.

    Wessels, M. R. & M. S. Bronze. Critical role of the group A streptococcal capsule in pharyngeal colonization and infection in mice. Proc. Natl. Acad. Sci. USA 91: 12238-12242, 1994.

    Wexler, D. E., D. E. Chenoweth & P. P. Cleary. Mechanism of action of the group A streptococcal C5a inactivator. Proc. Natl. Acad. Sci. USA 82: 8144-8148, 1985.

    Yan, J. J., C. C. Liu, W. C. Ko, S. Y. Hsu, H. M. Wu, Y. S. Lin, M. T. Lin, W. J. Chuang & J. J. Wu. Molecular analysis of group A streptococcal isolates associated with scarlet fever in southern Taiwan between 1993 and 2002. J. Clin. Microbiol. 41: 4858-4861, 2003.

    Zwietering, M. H., I. Jongenburger, F. M. Rombouts & K. van 't Riet. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56: 1875-1881, 1990.

    下載圖示 校內:2009-10-28公開
    校外:2010-10-28公開
    QR CODE