簡易檢索 / 詳目顯示

研究生: 方冠旻
Fang, Kuan-Min
論文名稱: P2X7受體調控微膠細胞吞噬能力及趨化激素表現之研究
P2X7 receptor mediates microglia phagocytosis and chemokine production
指導教授: 曾淑芬
Tzeng, Shun-Fen
學位類別: 博士
Doctor
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 109
中文關鍵詞: 微膠細胞腦膠質瘤吞噬活性趨化激素
外文關鍵詞: ATP, BzATP, microglia, glioma, P2X7R, phagocytosis, chemokines
相關次數: 點閱:101下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微膠細胞(microglia)為中樞神經中相當於免疫系統的巨噬細胞,能偵測神經系統中微環境的變化來引起類似免疫反應,並且擁有吞噬細胞/組織碎片的活性。微膠細胞的功能對於損傷的中樞神經系統組織/系統修復重建而言是非常重要的。ATP在免疫反應及神經系統功能中為重要的調控分子。神經系統受到損傷導致細胞損傷和死亡,此時ATP從損傷區的神經元細胞和活化的神經膠細胞被大量釋放,並透過活化P2受體(離子通道型的P2XR和G蛋白偶合型的的P2YR)調控微膠細胞的免疫細胞活性。本研究將初級微膠細胞與高濃度ATP或P2X7R促效劑(BzATP)共同培養30分鐘,發現細胞型態發生改變,並且顯著抑制微膠細胞的吞噬活性。以P2X7R拮抗劑(oxATP與BBG)抑制微膠細胞P2X7R的功能和利用慢病毒基因載體(lentiviral-mediated shRNA)降低微膠細胞P2X7R的基因表現,證實ATP降低微膠細胞的吞噬能力是透過引發P2X7R的活化,此調控機制是與P2X7R誘發胞內鈣離子濃度增加無關。
    先前本實驗室植入C6 glioma cells建立腦膠質瘤動物模式實驗中發現,在植入第3天和7天發現ED1+微膠細胞/巨噬細胞和Iba1+微膠細胞累積於腦腫瘤區域。雙重免疫螢光染色結果顯示累積在腦腫瘤區域的微膠細胞/巨噬細胞有macrophage inflammatory protein-1α (MIP-1α)和monocyte chemoattractant protein-1 (MCP-1)的表現。接續的實驗發現高濃度ATP處理微膠細胞會增加其胞內MIP-1α和MCP-1的表現量。結果證實BzATP的處理亦增加微膠細胞內MIP-1α和MCP-1生成量,而且調控機製為P2X7R誘發胞內鈣離子濃度增加的訊息傳遞途徑有關。在動物實驗中,C6 glioma cells和oxATP共同注射入腦皮質區,雖然Iba1+微膠細胞仍舊大量累積於腦腫瘤區域,但是表現MIP-1α和MCP-1的微膠細胞/吞噬細胞顯著減少。而且,oxATP的注射能有效抑制腦腫瘤的生長。
    綜合上述細胞與動物實驗結果,推測中樞神經系統損傷之後產生高量的ATP可以透過活化P2X7R誘發與非鈣離子主導的訊息傳遞路徑(calcium-independent)抑制微膠細胞的吞噬活性,導致清除受傷組織細胞殘骸碎片的效力低,進而阻礙組織的修復。另外,腦腫瘤區域高濃度的ATP也可能透過P2X7R活化與鈣離子主導(calcium-dependent)訊息傳遞途徑,增加微膠細胞/巨噬細胞內MIP-1α和MCP-1的表現量。因此,藉由阻斷P2X7R的活化,可以維持微膠細胞的吞噬活性,助益神經組織的修復;並且減低累積在腦膠質瘤內微膠細胞MIP-1α和MCP-1的表現量而抑制腦腫瘤的生長。

    Microglia, CNS-resident macrophages, are considered as a sensor to detect the change of CNS microenvironment and exert immune-like functions in protecting the CNS from injury and invading pathogens. These cells are rapidly activated and engulf degenerating cellular fragments in injured CNS, indicating that they are essential to tissue/system modeling in the injured CNS. ATP, an important intercellular regulator in the immune and nervous systems, is released primarily from injured neural cells and glial cells at the lesion site and glioma cells. ATP is known to mediate microglial activity through the activation of P2 purinergic receptors (ionotropic P2XR and G-protein coupled P2YR). To examine whether ATP mediates microglia function, in vitro and in vitro experiments were conducted in my study. The in vitro study indicated that exposure to a high concentration of ATP for 30 min rapidly induces changes of the microglial cytoskeleton and significantly attenuates microglial phagocytosis. A pharmacological approach and knockdown of P2X7R expression by lentiviral-mediated shRNA interference showed that ATP-induced inhibition of microglial phagocytotic activity was due to P2X7R-induced Ca2+-independent signaling pathway.
    Previously, we have found that Iba1+ microglia and ED1+ microglia/macrophages accumulated in the tumor at 3 day after injection of C6 glioma cells into the rat cerebral cortex (dpi) and at 7 dpi. ED1+ microglia/macrophages or Iba1+ microglia in the glioma were also co-localized to macrophage inflammatory protein-1α (MIP-1α) and monocyte chemoattractant protein-1 (MCP-1) expressing cells. Here, we found that application of ATP increased the release of MIP-1α and MCP-1 in primary microglia. The further study demonstrated that BzATP-induced production of MIP-1α and MCP-1 levels was due to P2X7R activation and Ca2+-dependent regulation. Co-administration with C6 glioma cells and oxATP into the rat cerebral cortex resulted in a reduction of MIP-1α and MCP-1 expressing microglia/macrophages. In addition, the application of oxATP effectively suppressed the growth of C6-induced glioma tumor.
    Together, based on the results from in vivo and in vitro studies, we suggest that exposure to ATP for a short-term period may cause insufficient clearance of tissue debris by microglia through P2X7R activation after CNS injury. A massive amount of ATP molecules released in the injured CNS may act as the regulator with P2X7R signaling to increases MIP-1α and MCP-1 expression in tumor-infiltrating microglia/macrophages. Thus, blockade of this receptor may not only preserve the phagocytosis of microglia and facilitate CNS tissue repair, but also inhibit tumor growth by the reduction of MIP-1α and MCP-1 expressing microglia in the tumor site.

    摘要 4 Abstract 6 目錄 9 圖目錄 11 縮寫表 12 第一章 緒論 13 一、微膠細胞的特性 14 二、微膠細胞的吞噬作用 16 三、微膠細胞和損傷脊髓組織的修復 17 四、微膠細胞和腦腫瘤生成 18 五、趨化激素的介紹 20 六、中樞神經系統的調控分子:ATP與嘌呤受體(purinergic receptors) 21 七、嘌呤受體與微膠細胞活性的相關研究 23 七、ATP受體用於修復受損神經組織的策略 27 第二章 研究目的 28 第三章 材料與方法 29 一、實驗材料 29 二、實驗方法 30 第四章 結果 40 一、 ATP透過P2X7R降低微膠細胞吞噬能力的探討 40 1、微膠細胞的吞噬能力分析 40 2、 ATP對於微膠細胞型態及其吞噬能力的影響 42 3、ATP抑制微膠細胞的吞噬活性透過P2 rceptor調控 43 4、P2X7R agonist (BzATP) 改變微膠細胞的型態也降低其吞噬活性 44 5、BzATP誘發與非Ca2+主導的胞內訊息傳遞路徑調控微膠細胞的吞噬活性 45 6、ATP透過P2X7R調控微膠細胞的吞噬能力 46 7、ATP抑制經LPS活化微膠細胞的吞噬活性 48 二、 大鼠腦瘤模式動物中,P2X7R調控微膠細胞MIP-1α和MCP-1表現 49 1、MIP-1α和MCP-1於大鼠神經膠質瘤的表現 49 2、ATP對微膠細胞表現MIP-1α及MCP-1的影響 52 3、微膠細胞P2X7R的活化促進MIP-1α及MCP-1的表現 53 5、透過P2X7R調控微膠細胞MIP-1α及MCP-1的表現和Ca2+相關 54 6、oxATP降低腦瘤模式動物中神經膠質瘤區域內MIP-1α與MCP-1的表現 54 第五章 討論 57 一、ATP降低微膠細胞吞噬能力的探討 57 二、P2X7R調控微膠細胞趨化激素表現 61 第六章 結論 68 第七章 參考文獻 69 第八章 圖表 79 簡歷 109

    Abbracchio MP, Verderio C (2006) Pathophysiological roles of P2 receptors in glial cells. Novartis Found Symp 276:91-103; discussion 103-112, 275-181.
    Andoh A, Fujiyama Y, Kitoh K, Hodohara K, Bamba T, Hosoda S (1991) Flow cytometric assay for phagocytosis of human monocytes mediated via Fc gamma-receptors and complement receptor CR1 (CD35). Cytometry 12:677-686.
    Badie B, Schartner J (2001) Role of microglia in glioma biology. Microsc Res Tech 54:106-113.
    Bajetto A, Bonavia R, Barbero S, Schettini G (2002) Characterization of chemokines and their receptors in the central nervous system: physiopathological implications. J Neurochem 82:1311-1329.
    Banati RB, Gehrmann J, Schubert P, Kreutzberg GW (1993) Cytotoxicity of microglia. Glia 7:111-118.
    Banisadr G, Rostene W, Kitabgi P, Parsadaniantz SM (2005) Chemokines and brain functions. Curr Drug Targets Inflamm Allergy 4:387-399.
    Becker KP, Hannun YA (2005) Protein kinase C and phospholipase D: intimate interactions in intracellular signaling. Cell Mol Life Sci 62:1448-1461.
    Bessis A, Bechade C, Bernard D, Roumier A (2007) Microglial control of neuronal death and synaptic properties. Glia 55:233-238.
    Bianco F, Pravettoni E, Colombo A, Schenk U, Moller T, Matteoli M, Verderio C (2005) Astrocyte-derived ATP induces vesicle shedding and IL-1 beta release from microglia. J Immunol 174:7268-7277.
    Bianco F, Ceruti S, Colombo A, Fumagalli M, Ferrari D, Pizzirani C, Matteoli M, Di Virgilio F, Abbracchio MP, Verderio C (2006) A role for P2X7 in microglial proliferation. J Neurochem 99:745-758.
    Biber K, Vinet J, Boddeke HW (2008) Neuron-microglia signaling: chemokines as versatile messengers. J Neuroimmunol 198:69-74.
    Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57-69.
    Bodin P, Burnstock G (2001) Purinergic signalling: ATP release. Neurochem Res 26:959-969.
    Boucsein C, Zacharias R, Farber K, Pavlovic S, Hanisch UK, Kettenmann H (2003) Purinergic receptors on microglial cells: functional expression in acute brain slices and modulation of microglial activation in vitro. Eur J Neurosci 17:2267-2276.
    Braunstein GM, Roman RM, Clancy JP, Kudlow BA, Taylor AL, Shylonsky VG, Jovov B, Peter K, Jilling T, Ismailov, II, Benos DJ, Schwiebert LM, Fitz JG, Schwiebert EM (2001) Cystic fibrosis transmembrane conductance regulator facilitates ATP release by stimulating a separate ATP release channel for autocrine control of cell volume regulation. J Biol Chem 276:6621-6630.
    Burnstock G (2006) Historical review: ATP as a neurotransmitter. Trends Pharmacol Sci 27:166-176.
    Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659-797.
    Caron E, Hall A (1998) Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282:1717-1721.
    Carpentier AF, Xie J, Mokhtari K, Delattre JY (2000) Successful treatment of intracranial gliomas in rat by oligodeoxynucleotides containing CpG motifs. Clin Cancer Res 6:2469-2473.
    Chan A, Magnus T, Gold R (2001) Phagocytosis of apoptotic inflammatory cells by microglia and modulation by different cytokines: mechanism for removal of apoptotic cells in the inflamed nervous system. Glia 33:87-95.
    Chen Y, Aulia S, Tang BL (2006) Myelin-associated glycoprotein-mediated signaling in central nervous system pathophysiology. Mol Neurobiol 34:81-91.
    Chimini G, Chavrier P (2000) Function of Rho family proteins in actin dynamics during phagocytosis and engulfment. Nat Cell Biol 2:E191-196.
    Coco S, Calegari F, Pravettoni E, Pozzi D, Taverna E, Rosa P, Matteoli M, Verderio C (2003) Storage and release of ATP from astrocytes in culture. J Biol Chem 278:1354-1362.
    Cohen G, Makranz C, Spira M, Kodama T, Reichert F, Rotshenker S (2006) Non-PKC DAG/phorbol-ester receptor(s) inhibit complement receptor-3 and nPKC inhibit scavenger receptor-AI/II-mediated myelin phagocytosis but cPKC, PI3k, and PLCgamma activate myelin phagocytosis by both. Glia 53:538-550.
    Corriden R, Insel PA (2010) Basal release of ATP: an autocrine-paracrine mechanism for cell regulation. Sci Signal 3:re1.
    Cotrina ML, Lin JH, Alves-Rodrigues A, Liu S, Li J, Azmi-Ghadimi H, Kang J, Naus CC, Nedergaard M (1998) Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci U S A 95:15735-15740.
    Cowell RM, Xu H, Galasso JM, Silverstein FS (2002) Hypoxic-ischemic injury induces macrophage inflammatory protein-1alpha expression in immature rat brain. Stroke 33:795-801.
    Darby M, Kuzmiski JB, Panenka W, Feighan D, MacVicar BA (2003) ATP released from astrocytes during swelling activates chloride channels. J Neurophysiol 89:1870-1877.
    Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752-758.
    Delarasse C, Gonnord P, Galante M, Auger R, Daniel H, Motta I, Kanellopoulos JM (2009) Neural progenitor cell death is induced by extracellular ATP via ligation of P2X7 receptor. J Neurochem 109:846-857.
    Deng YY, Lu J, Ling EA, Kaur C (2009) Monocyte chemoattractant protein-1 (MCP-1) produced via NF-kappaB signaling pathway mediates migration of amoeboid microglia in the periventricular white matter in hypoxic neonatal rats. Glia 57:604-621.
    Desbaillets I, Tada M, de Tribolet N, Diserens AC, Hamou MF, Van Meir EG (1994) Human astrocytomas and glioblastomas express monocyte chemoattractant protein-1 (MCP-1) in vivo and in vitro. Int J Cancer 58:240-247.
    Di Virgilio F, Ceruti S, Bramanti P, Abbracchio MP (2009) Purinergic signalling in inflammation of the central nervous system. Trends Neurosci 32:79-87.
    Duan S, Neary JT (2006) P2X(7) receptors: properties and relevance to CNS function. Glia 54:738-746.
    Fang KM, Wang YL, Huang MC, Sun SH, Cheng H, Tzeng SF (2010) Expression of macrophage inflammatory protein 1 alpha and monocyte chemoattractant protein 1 in glioma-infiltrating microglia: Involvement of ATP and P2X7 receptor (in press). J Neurosci Res in press.
    Ferrari D, Chiozzi P, Falzoni S, Hanau S, Di Virgilio F (1997a) Purinergic modulation of interleukin-1 beta release from microglial cells stimulated with bacterial endotoxin. J Exp Med 185:579-582.
    Ferrari D, Chiozzi P, Falzoni S, Dal Susino M, Collo G, Buell G, Di Virgilio F (1997b) ATP-mediated cytotoxicity in microglial cells. Neuropharmacology 36:1295-1301.
    Fields RD, Stevens B (2000) ATP: an extracellular signaling molecule between neurons and glia. Trends Neurosci 23:625-633.
    Fields RD, Burnstock G (2006) Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 7:423-436.
    Filbin MT (2003) Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 4:703-713.
    Friedle SA, Brautigam VM, Nikodemova M, Wright ML, Watters JJ (2010) The P2X7-Egr pathway regulates nucleotide-dependent inflammatory gene expression in microglia. Glia.
    Fujimoto H, Sangai T, Ishii G, Ikehara A, Nagashima T, Miyazaki M, Ochiai A (2009) Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int J Cancer 125:1276-1284.
    Gayle DA, Ling Z, Tong C, Landers T, Lipton JW, Carvey PM (2002) Lipopolysaccharide (LPS)-induced dopamine cell loss in culture: roles of tumor necrosis factor-alpha, interleukin-1beta, and nitric oxide. Brain Res Dev Brain Res 133:27-35.
    Giger RJ, Venkatesh K, Chivatakarn O, Raiker SJ, Robak L, Hofer T, Lee H, Rader C (2008) Mechanisms of CNS myelin inhibition: evidence for distinct and neuronal cell type specific receptor systems. Restor Neurol Neurosci 26:97-115.
    Greenberg S (1995) Signal transduction of phagocytosis. Trends Cell Biol 5:93-99.
    Haas S, Brockhaus J, Verkhratsky A, Kettenmann H (1996) ATP-induced membrane currents in ameboid microglia acutely isolated from mouse brain slices. Neuroscience 75:257-261.
    Hanisch UK (2002) Microglia as a source and target of cytokines. Glia 40:140-155.
    Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387-1394.
    Hao C, Parney IF, Roa WH, Turner J, Petruk KC, Ramsay DA (2002) Cytokine and cytokine receptor mRNA expression in human glioblastomas: evidence of Th1, Th2 and Th3 cytokine dysregulation. Acta Neuropathol 103:171-178.
    Harden TK, Lazarowski ER (1999) Release of ATP and UTP from astrocytoma cells. Prog Brain Res 120:135-143.
    Hayashi M, Luo Y, Laning J, Strieter RM, Dorf ME (1995) Production and function of monocyte chemoattractant protein-1 and other beta-chemokines in murine glial cells. J Neuroimmunol 60:143-150.
    Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9:1512-1519.
    Hide I, Tanaka M, Inoue A, Nakajima K, Kohsaka S, Inoue K, Nakata Y (2000) Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia. J Neurochem 75:965-972.
    Hisadome K, Koyama T, Kimura C, Droogmans G, Ito Y, Oike M (2002) Volume-regulated anion channels serve as an auto/paracrine nucleotide release pathway in aortic endothelial cells. J Gen Physiol 119:511-520.
    Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93:266-276.
    Honda S, Sasaki Y, Ohsawa K, Imai Y, Nakamura Y, Inoue K, Kohsaka S (2001) Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J Neurosci 21:1975-1982.
    Ichinose M (1995) Modulation of phagocytosis by P2-purinergic receptors in mouse peritoneal macrophages. Jpn J Physiol 45:707-721.
    Inoue K (2002) Microglial activation by purines and pyrimidines. Glia 40:156-163.
    Inoue K (2008) Purinergic systems in microglia. Cell Mol Life Sci 65:3074-3080.
    Inoue K, Koizumi S, Tsuda M (2007) The role of nucleotides in the neuron--glia communication responsible for the brain functions. J Neurochem 102:1447-1458.
    Inoue K, Koizumi S, Kataoka A, Tozaki-Saitoh H, Tsuda M (2009) P2Y(6)-Evoked Microglial Phagocytosis. Int Rev Neurobiol 85:159-163.
    Ishii N, Tada M, Sakuma S, Sawamura Y, Shinohe Y, Abe H (1998) Human astrocytoma cells are capable of producing macrophage inflammatory protein-1beta. J Neurooncol 37:17-23.
    Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998) Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 57:1-9.
    Kataoka A, Tozaki-Saitoh H, Koga Y, Tsuda M, Inoue K (2009) Activation of P2X7 receptors induces CCL3 production in microglial cells through transcription factor NFAT. J Neurochem 108:115-125.
    Katayama T, Ito M, Kaneko S, Satoh M, Uehara T, Minami M (2009) Reciprocal regulation of ATPgammaS-induced monocyte chemoattractant protein-1 production by ERK and p38 MAP kinases in rat corticostriatal slice cultures. J Neurosci Res 87:1573-1581.
    Kettenmann H (2006) Triggering the brain's pathology sensor. Nat Neurosci 9:1463-1464.
    Khakh BS, Burnstock G, Kennedy C, King BF, North RA, Seguela P, Voigt M, Humphrey PP (2001) International union of pharmacology. XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits. Pharmacol Rev 53:107-118.
    Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29:13435-13444.
    Kim M, Jiang LH, Wilson HL, North RA, Surprenant A (2001) Proteomic and functional evidence for a P2X7 receptor signalling complex. EMBO J 20:6347-6358.
    Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, Shinozaki Y, Ohsawa K, Tsuda M, Joshi BV, Jacobson KA, Kohsaka S, Inoue K (2007) UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 446:1091-1095.
    Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312-318.
    Lauber K, Bohn E, Krober SM, Xiao YJ, Blumenthal SG, Lindemann RK, Marini P, Wiedig C, Zobywalski A, Baksh S, Xu Y, Autenrieth IB, Schulze-Osthoff K, Belka C, Stuhler G, Wesselborg S (2003) Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113:717-730.
    Lazarowski E (2006) Regulated release of nucleotides and UDP sugars from astrocytoma cells. Novartis Found Symp 276:73-84; discussion 84-90, 107-112, 275-181.
    Lazarowski ER, Boucher RC, Harden TK (2003) Mechanisms of release of nucleotides and integration of their action as P2X- and P2Y-receptor activating molecules. Mol Pharmacol 64:785-795.
    Lee TI, Yang CS, Fang KM, Tzeng SF (2009) Role of ciliary neurotrophic factor in microglial phagocytosis. Neurochem Res 34:109-117.
    Lennartz MR (1999) Phospholipases and phagocytosis: the role of phospholipid-derived second messengers in phagocytosis. Int J Biochem Cell Biol 31:415-430.
    Leung SY, Wong MP, Chung LP, Chan AS, Yuen ST (1997) Monocyte chemoattractant protein-1 expression and macrophage infiltration in gliomas. Acta Neuropathol (Berl) 93:518-527.
    Liu B, Gao HM, Wang JY, Jeohn GH, Cooper CL, Hong JS (2002) Role of nitric oxide in inflammation-mediated neurodegeneration. Ann N Y Acad Sci 962:318-331.
    Loughlin AJ, Woodroofe MN, Cuzner ML (1992) Regulation of Fc receptor and major histocompatibility complex antigen expression on isolated rat microglia by tumour necrosis factor, interleukin-1 and lipopolysaccharide: effects on interferon-gamma induced activation. Immunology 75:170-175.
    Magnus T, Chan A, Savill J, Toyka KV, Gold R (2002a) Phagocytotic removal of apoptotic, inflammatory lymphocytes in the central nervous system by microglia and its functional implications. J Neuroimmunol 130:1-9.
    Magnus T, Chan A, Linker RA, Toyka KV, Gold R (2002b) Astrocytes are less efficient in the removal of apoptotic lymphocytes than microglia cells: implications for the role of glial cells in the inflamed central nervous system. J Neuropathol Exp Neurol 61:760-766.
    Makranz C, Cohen G, Reichert F, Kodama T, Rotshenker S (2006) cAMP cascade (PKA, Epac, adenylyl cyclase, Gi, and phosphodiesterases) regulates myelin phagocytosis mediated by complement receptor-3 and scavenger receptor-AI/II in microglia and macrophages. Glia 53:441-448.
    Massol P, Montcourrier P, Guillemot JC, Chavrier P (1998) Fc receptor-mediated phagocytosis requires CDC42 and Rac1. EMBO J 17:6219-6229.
    McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85:890-902.
    McManus CM, Brosnan CF, Berman JW (1998) Cytokine induction of MIP-1 alpha and MIP-1 beta in human fetal microglia. J Immunol 160:1449-1455.
    Mishima K, Higashiyama S, Asai A, Yamaoka K, Nagashima Y, Taniguchi N, Kitanaka C, Kirino T, Kuchino Y (1998) Heparin-binding epidermal growth factor-like growth factor stimulates mitogenic signaling and is highly expressed in human malignant gliomas. Acta Neuropathol 96:322-328.
    Mongin AA, Kimelberg HK (2002) ATP potently modulates anion channel-mediated excitatory amino acid release from cultured astrocytes. Am J Physiol Cell Physiol 283:C569-578.
    Monif M, Burnstock G, Williams DA (2010) Microglia: Proliferation and activation driven by the P2X7 receptor. Int J Biochem Cell Biol.
    Morioka N, Abdin MJ, Kitayama T, Morita K, Nakata Y, Dohi T (2008) P2X(7) receptor stimulation in primary cultures of rat spinal microglia induces downregulation of the activity for glutamate transport. Glia 56:528-538.
    Morrone FB, Horn AP, Stella J, Spiller F, Sarkis JJ, Salbego CG, Lenz G, Battastini AM (2005) Increased resistance of glioma cell lines to extracellular ATP cytotoxicity. J Neurooncol 71:135-140.
    Morrone FB, Oliveira DL, Gamermann P, Stella J, Wofchuk S, Wink MR, Meurer L, Edelweiss MI, Lenz G, Battastini AM (2006) In vivo glioblastoma growth is reduced by apyrase activity in a rat glioma model. BMC Cancer 6:226.
    Neary JT, Kang Y, Shi YF, Tran MD, Wanner IB (2006) P2 receptor signalling, proliferation of astrocytes, and expression of molecules involved in cell-cell interactions. Novartis Found Symp 276:131-143; discussion 143-137, 233-137, 275-181.
    Neumark E, Anavi R, Witz IP, Ben-Baruch A (1999) MCP-1 expression as a potential contributor to the high malignancy phenotype of murine mammary adenocarcinoma cells. Immunol Lett 68:141-146.
    North RA, Barnard EA (1997) Nucleotide receptors. Curr Opin Neurobiol 7:346-357.
    North RA, Verkhratsky A (2006) Purinergic transmission in the central nervous system. Pflugers Arch 452:479-485.
    Ohsawa K, Imai Y, Kanazawa H, Sasaki Y, Kohsaka S (2000) Involvement of Iba1 in membrane ruffling and phagocytosis of macrophages/microglia. J Cell Sci 113 ( Pt 17):3073-3084.
    Ohsawa K, Irino Y, Nakamura Y, Akazawa C, Inoue K, Kohsaka S (2007) Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis. Glia 55:604-616.
    Ohsawa K, Irino Y, Sanagi T, Nakamura Y, Suzuki E, Inoue K, Kohsaka S (2010) P2Y12 receptor-mediated integrin-beta1 activation regulates microglial process extension induced by ATP. Glia 58:790-801.
    Peng W, Cotrina ML, Han X, Yu H, Bekar L, Blum L, Takano T, Tian GF, Goldman SA, Nedergaard M (2009) Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury. Proc Natl Acad Sci U S A 106:12489-12493.
    Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6:193-201.
    Piccini A, Carta S, Tassi S, Lasiglie D, Fossati G, Rubartelli A (2008) ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1beta and IL-18 secretion in an autocrine way. Proc Natl Acad Sci U S A 105:8067-8072.
    Platten M, Kretz A, Naumann U, Aulwurm S, Egashira K, Isenmann S, Weller M (2003) Monocyte chemoattractant protein-1 increases microglial infiltration and aggressiveness of gliomas. Ann Neurol 54:388-392.
    Prewitt CM, Niesman IR, Kane CJ, Houle JD (1997) Activated macrophage/microglial cells can promote the regeneration of sensory axons into the injured spinal cord. Exp Neurol 148:433-443.
    Qin L, Liu Y, Cooper C, Liu B, Wilson B, Hong JS (2002) Microglia enhance beta-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J Neurochem 83:973-983.
    Qiu J, Cai D, Filbin MT (2000) Glial inhibition of nerve regeneration in the mature mammalian CNS. Glia 29:166-174.
    Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413-492.
    Raman D, Baugher PJ, Thu YM, Richmond A (2007) Role of chemokines in tumor growth. Cancer Lett 256:137-165.
    Rampe D, Wang L, Ringheim GE (2004) P2X7 receptor modulation of beta-amyloid- and LPS-induced cytokine secretion from human macrophages and microglia. J Neuroimmunol 147:56-61.
    Reiss K, Mentlein R, Sievers J, Hartmann D (2002) Stromal cell-derived factor 1 is secreted by meningeal cells and acts as chemotactic factor on neuronal stem cells of the cerebellar external granular layer. Neuroscience 115:295-305.
    Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, Lokensgard JR, Peterson PK (2004) Role of microglia in central nervous system infections. Clin Microbiol Rev 17:942-964, table of contents.
    Roggendorf W, Strupp S, Paulus W (1996a) Distribution and characterization of microglia/macrophages in human brain tumors. Acta Neuropathol 92:288-293.
    Roggendorf W, Strupp S, Paulus W (1996b) Distribution and characterization of microglia/macrophages in human brain tumors. Acta Neuropathol (Berl) 92:288-293.
    Sabirov RZ, Okada Y (2005) ATP release via anion channels. Purinergic Signal 1:311-328.
    Sanz JM, Di Virgilio F (2000) Kinetics and mechanism of ATP-dependent IL-1 beta release from microglial cells. J Immunol 164:4893-4898.
    Schartner JM, Hagar AR, Van Handel M, Zhang L, Nadkarni N, Badie B (2005) Impaired capacity for upregulation of MHC class II in tumor-associated microglia. Glia 51:279-285.
    Shemon AN, Sluyter R, Wiley JS (2007) Rottlerin inhibits P2X(7) receptor-stimulated phospholipase D activity in chronic lymphocytic leukaemia B-lymphocytes. Immunol Cell Biol 85:68-72.
    Shiga H, Tojima T, Ito E (2001) Ca2+ signaling regulated by an ATP-dependent autocrine mechanism in astrocytes. Neuroreport 12:2619-2622.
    Skaper SD, Facci L, Culbert AA, Evans NA, Chessell I, Davis JB, Richardson JC (2006) P2X(7) receptors on microglial cells mediate injury to cortical neurons in vitro. Glia 54:234-242.
    Smith ME (1999) Phagocytosis of myelin in demyelinative disease: a review. Neurochem Res 24:261-268.
    Stence N, Waite M, Dailey ME (2001) Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33:256-266.
    Streit WJ (1994) Cellular immune response in brain tumors. Neuropathol Appl Neurobiol 20:205-206.
    Sung SS, Young JD, Origlio AM, Heiple JM, Kaback HR, Silverstein SC (1985) Extracellular ATP perturbs transmembrane ion fluxes, elevates cytosolic [Ca2+], and inhibits phagocytosis in mouse macrophages. J Biol Chem 260:13442-13449.
    Suzuki T, Hide I, Ido K, Kohsaka S, Inoue K, Nakata Y (2004) Production and release of neuroprotective tumor necrosis factor by P2X7 receptor-activated microglia. J Neurosci 24:1-7.
    Takenouchi T, Sato M, Kitani H (2007) Lysophosphatidylcholine potentiates Ca2+ influx, pore formation and p44/42 MAP kinase phosphorylation mediated by P2X7 receptor activation in mouse microglial cells. J Neurochem 102:1518-1532.
    Takenouchi T, Nakai M, Iwamaru Y, Sugama S, Tsukimoto M, Fujita M, Wei J, Sekigawa A, Sato M, Kojima S, Kitani H, Hashimoto M (2009) The activation of P2X7 receptor impairs lysosomal functions and stimulates the release of autophagolysosomes in microglial cells. J Immunol 182:2051-2062.
    Vallieres N, Berard JL, David S, Lacroix S (2006) Systemic injections of lipopolysaccharide accelerates myelin phagocytosis during Wallerian degeneration in the injured mouse spinal cord. Glia 53:103-113.
    van Rossum D, Hanisch UK (2004) Microglia. Metab Brain Dis 19:393-411.
    Vandercappellen J, Van Damme J, Struyf S (2008) The role of CXC chemokines and their receptors in cancer. Cancer Lett 267:226-244.
    Verhoef PA, Estacion M, Schilling W, Dubyak GR (2003) P2X7 receptor-dependent blebbing and the activation of Rho-effector kinases, caspases, and IL-1 beta release. J Immunol 170:5728-5738.
    Virginio C, MacKenzie A, North RA, Surprenant A (1999) Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor. J Physiol 519 Pt 2:335-346.
    von Kugelgen I (2006) Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Pharmacol Ther 110:415-432.
    Wang X, Arcuino G, Takano T, Lin J, Peng WG, Wan P, Li P, Xu Q, Liu QS, Goldman SA, Nedergaard M (2004) P2X7 receptor inhibition improves recovery after spinal cord injury. Nat Med 10:821-827.
    Wang YL (2005) Microglial macrophage inflammatory protein-1a expression upregulated by glioma-secreted factors.
    Watters JJ, Schartner JM, Badie B (2005) Microglia function in brain tumors. J Neurosci Res 81:447-455.
    Wierzba-Bobrowicz T, Kuchna I, Matyja E (1994) Reaction of microglial cells in human astrocytomas (preliminary report). Folia Neuropathol 32:251-252.
    Wink MR, Lenz G, Braganhol E, Tamajusuku AS, Schwartsmann G, Sarkis JJ, Battastini AM (2003) Altered extracellular ATP, ADP and AMP catabolism in glioma cell lines. Cancer Lett 198:211-218.
    Wu LJ, Vadakkan KI, Zhuo M (2007) ATP-induced chemotaxis of microglial processes requires P2Y receptor-activated initiation of outward potassium currents. Glia 55:810-821.
    Yiu G, He Z (2006) Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7:617-627.
    Zhang SC, Goetz BD, Carre JL, Duncan ID (2001) Reactive microglia in dysmyelination and demyelination. Glia 34:101-109.
    Zielasek J, Hartung HP (1996) Molecular mechanisms of microglial activation. Adv Neuroimmunol 6:191-122.

    下載圖示 校內:2015-10-15公開
    校外:2015-10-15公開
    QR CODE