簡易檢索 / 詳目顯示

研究生: 陳柏舟
Chen, Bo-Jou
論文名稱: 熱處理對6056鋁合金冷軋延特性與拉伸機械性質之影響
Effects of Heat Treatment on Cold Rolling Characteristics and Tensile Mechanical Properties of 6056 Aluminum Alloy
指導教授: 洪飛義
Hung, Fei-Yi
呂傳盛
Lui, Truan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 65
中文關鍵詞: 鋁合金軋延熱處理冷加工機械性質
外文關鍵詞: 6056 aluminum alloy, Rolling, Heat treatment, Mechanical properties
相關次數: 點閱:46下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 6056鋁合金具有優秀耐腐蝕性、高強度和良好的成形性,因此近年來常被用作汽車螺絲與扣件的材料使用。但在螺絲製造的過程中,打頭時的冷鍛加工由於變形量過大常常導致材料脆裂。因此,本研究為改善其加工性,對材料施以多種熱處理方法,並探討其冷軋延特性與拉伸機械性質的變化。另外,本研究亦會針對冷軋加工過後的材料,探討熱處理對冷軋材的微觀組織與拉伸機械性質的影響。
    本研究中試驗材料分為六種:未經過任何熱處理的F材、經退火熱處理的O材、經固溶熱處理後淬水的W材、固溶熱處理後再195℃時效2小時的SPA195材、固溶熱處理後再230℃時效2小時的SOA230材、固溶熱處理後再250℃時效2小時的SOA250材。
    實驗結果顯示,在上述的六種材料經過冷軋延至減變率85%時,SOA250材表現出最佳的冷軋延加工性,而工業上常用的O材則是由於退火熱處理無法消除組織中的粗大晶出物,使得冷軋延加工性沒有顯著改善。隨著時效溫度的提升,可以發現材料冷軋延加工性逐漸上升,並且內部硬度分布會變得更加均勻,這是因為時效使得基地中析出相粗化,使得冷軋加工時整體材料變形愈來愈均勻,進而提升臨界分解剪應力,故材料不易破裂。
    由於SOA250材經過時效處理,雖然冷軋延特性提升,但強度和延性都大幅下降;而經冷軋延加工後,其強度提升有限。故本研究將冷軋延後的SOA250材再次進行T6熱處理,發現材料的拉抗強度可回復到約430 MPa,而總伸長率也回復到約23%,與進行過T6熱處理的原材相當。
    本研究先將材料進行固溶熱處理和過時效處理獲得良好的冷軋延加工性,後續再施以T6熱處理得到優異的強度與延性,使材料符合車輛工業扣件應用標準。

    6056 aluminum alloy which is designed to used in the automotive application because of the good corrosion resistance and high strength was carried out in this study. Although 6056 aluminum alloy had such good mechanical properties and formability, it’s surface cracked while applying the head forging process. Thus, the object of the experiment is improving the formability of 6056 aluminum alloy by using the pre-heat treatment. We got 5 different conditions of pre-heat treatment, annealing (O), solution treatment (W), aging in 195℃,230℃ and 250℃ for 2 hours after solution treatment (SPA195, SOA230 and SOA250).The experiment results showed that SOA250 had the best formability which can be compressed to reduction ratio 85% in diameter after cold rolling. O didn’t show good formability due to coarse second phase in the crystal. We could find out that the formability of 6056 aluminum alloy gets better with the rising temperature of artificial aging. According to the results of microhardness test, we could only surmise that there may be some relationship between formability and texture. Although SOA250 has good formability, it showed low strength and poor ductility after applying cold rolling. To improve the ductility and strength, we applied one more T6 treatment after cold rolling SOA250. The results showed that the ductility and strength was improved, and the mechanical properties of SOA250 after T6 is good enough to be used in automotive application.

    中文摘要 I 英文摘要 III 致謝 X 目錄 XI 表目錄 XIV 圖目錄 XV 第一章 前言 1 第二章 文獻回顧 3 2-1 6xxx系列Al-Mg-Si鋁合金 3 2-1-1 Al-Mg-Si鋁合金簡介 3 2-1-2 Al-Mg-Si鋁合金析出序列 3 2-1-3 合金元素添加效應 4 2-2 軋延加工 5 2-3 熱處理效應 6 2-3-1 退火熱處理 6 2-3-2 固溶熱處理 7 2-3-3 時效處理 7 2-4 研究目的 8 第三章 實驗步驟與方法 12 3-1 實驗流程與材料製備 12 3-2 熱處理條件 12 3-2-1 固溶熱處理條件選定 12 3-2-2 退火熱處理條件選定 13 3-2-3 時效處理條件選定 14 3-2-4 冷軋後T6熱處理條件選定 14 3-3 微觀組織分析 15 3-4 硬度試驗 15 3-5 微硬度試驗 16 3-6拉伸試驗 16 第四章 結果與討論 26 4-1 6056鋁合金加工成形性探討 26 4-1-1 微觀組織特性與相結構分析 26 4-1-2 第二相組成與分率調查 27 4-1-3 拉伸機械性質與硬度 29 4-1-4 拉伸破斷特徵與機制 30 4-1-5 冷軋延加工性調查 30 4-2 6056鋁合金成形後熱處理效應探討 31 4-2-1 微觀組織特性與相結構分析 32 4-2-2 拉伸機械性質與硬度 33 4-2-3 拉伸破斷特徵與機制 34 4-3 冷塑變形機制與破壞行為 34 第五章 結論 60 參考文獻 62

    1. I. Iwayama, T. Kuwabara, Y. Nakai, Y. Takaki, S. Kitamura, and H. Saito, 6056 Aluminum Alloy Wire for Automotive Fasteners, SEI technical review, 77, 74-78, 2013.
    2. L. Zhen, W.D. Fei, S.B. Kang, and H.W. Kim, Precipitation behaviour of Al-Mg-Si alloys with high silicon content, Journal of Material Science, 32 (7), 1895-1902, 1997.
    3. G. Mrówka-Nowotnik and J. Sieniawski, Influence of heat treatment on the microstructure and mechanical properties of 6005 and 6082 aluminium alloys, Journal of Materials Processing Technology, 162, 367-372, 2005.
    4. J.E. Hatch, Aluminum: Properties and Physical Metallurgy, ASM, 50-51, 1984.
    5. Y. Han, K. Ma, L. Li, W. Chen, and H. Nagaumi, Study on microstructure and mechanical properties of Al–Mg–Si–Cu alloy with high manganese content, Materials & Design, 39, 418-424, 2012.
    6. S.M. Hirth, G.J. Marshall, S.A. Court, and D.J. Lloyd, Effects of Si on the aging behaviour and formability of aluminium alloys based on AA6016, Material Science and Engineering: A, 319, 452-456, 2001.
    7. J.E. Hatch, Aluminum: Properties and Physical Metallurgy, ASM, 224-240, 1984.
    8. J.R. Davis, Aluminum and aluminum alloys, ASM International, 90-92, 1993.

    9. D. Zander, C. Schnatterer, C. Altenbach, and V. Chaineux, Microstructural impact on intergranular corrosion and the mechanical properties of industrial drawn 6056 aluminum wires, Materials & Design, 83, 49-59, 2015.
    10. Y.S. Lee, Y.N Kwon, J.H. Lee, C. Park, and S.S. Kim, Effects of strain and strain rate on tensile behavior of hot-forged Al 6061-T6, Material Science and Engineering: A, 362 (1), 187-191, 2003.
    11. L.P. Troeger and E.A. StarkeJr, Particle-stimulated nucleation of recrystallization for grain-size control and superplasticity in an Al–Mg–Si–Cu alloy, Material Science and Engineering: A, 293 (1), 19-29, 2000.
    12. Ø Ryen, Work Hardening and Mechanical Anisotropy of Aluminium Sheets and Profiles, The Norwegian University of Science and Technology, Doctoral dissertation, 19-23, 2003.
    13. B. Zhang and T.N. Baker, Effect of the heat treatment on the hot deformation behaviour of AA6082 alloy, Journal of Materials Processing Technology, 153, 881-885, 2004.
    14. J.H. Ryu and D.N. Lee, The effect of precipitation on the evolution of recrystallization texture in AA8011 aluminum alloy sheet, Material Science and Engineering: A, 336 (1), 225-232, 2002.
    15. K. Kashihara and H. Inagaki, Effect of Precipitation on Development of Recrystallization Texture in a 6061 Aluminum Alloy, Material Transactions, 50 (3), 528-536, 2009.
    16. Y. Birol, Effect of cooling rate on precipitation during homogenization cooling in an excess silicon AlMgSi alloy, Materials Characterization, 73, 37-42, 2012.

    17. H. Li, Q.Z. Mao, Z.X. Wang, F.F. Miao, and B.J. Fang, Enhancing mechanical properties of Al–Mg–Si–Cu sheets by solution treatment substituting for recrystallization annealing before the final cold-rolling, Material Science and Engineering: A, 620, 204-212, 2015.
    18. M. Takeda, F. Ohkubo, and T. Shirai, Stability of metastable phases and microstructures in the ageing process of Al-Mg-Si ternary alloys, Journal of Material Science, 33 (9), 2385-2390, 1998.
    19. V. Guillaumin and G. Mankowski, Localized corrosion of 6056 T6 aluminium alloy in chloride media, Corrosion Science, 42 (1), 105-125, 2000.
    20. V. Guillaumin and G. Mankowski, Influence of overaging treatment on localized corrosion of Al 6056, Corrosion Science, 56 (1), 12-23, 2000.
    21. K. Hockauf, L.W. Meyer, and M. Hockauf, Improvement of strength and ductility for a 6056 aluminum alloy achieved by a combination of equal-channel angular pressing and aging treatment, Journal of Material Science, 45 (17), 4754-4760, 2010.
    22. 張家源,熱處理製程對6069鋁合金微觀組織與拉伸機械性質之影響,國立成功大學材料科學及工程學系,碩士論文,民國105年。
    23. N.C.W. Kuijpers, W.H. Kool, P.T.G. Koenis, K.E. Nilsen, I.Todd, and S. van der Zwaag, Assessment of different techniques for quantification of α-Al(FeMn)Si and β-AlFeSi intermetallics in AA 6xxx alloys, Materials Characterization, 49 (5), 409-420, 2002.

    24. A.M.A. Mohamed, A.M. Samuel, F.H. Samuel, and H.W. Doty, Influence of additives on the microstructure and tensile properties of near-eutectic Al–10.8%Si cast alloy, Materials & Design, 30 (10), 3943-3957, 2009.
    25. J Bajer, M. Cieslar, M. Slapakova, M. Zimina, Z. Novy, and A. Materna, Grain Structure and Microhardness Development of Twin-Roll Cast Aluminum Strips after Constrained Groove Pressing, ACTA PHYSICA POLONICA A, 134 (3), 909-912, 2018.
    26. J. Zhang, Z. Fan, Y.Q. Wang, and B.L. Zhou, Equilibrium pseudobinary Al–Mg2Si phase diagram, Materials Science and Technology, 17 (5), 494-496, 2001.

    無法下載圖示 校內:2024-08-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE