簡易檢索 / 詳目顯示

研究生: 徐頡
Hsu, Hsieh
論文名稱: K線分析對ETF市場的預測效果-以美國ETF市場為例
The Predictive Effectiveness of Candlestick Analysis in the ETF Market: A Study on the U.S. ETF Market
指導教授: 林常青
Lin, Chang-Ching
學位類別: 碩士
Master
系所名稱: 社會科學院 - 經濟學系
Department of Economics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 140
中文關鍵詞: 交易成本ETF 市場K 線技術分析資料窺探實證研究短期報酬率
外文關鍵詞: Candlestick technical analysis, ETF market, Short-term returns, Transaction costs, Empirical results
ResearchGate: Short-Term Returns
相關次數: 點閱:24下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討K線技術分析於ETF市場中的預測效能與實務應用價值。儘管K線分析作為技術分析的重要工具,其於股票市場中已有廣泛應用與研究,然而在ETF市場快速發展且結構獨特的情境下,其有效性尚缺乏系統性的實證檢驗。本文以美國ETF市場332檔ETF於2014年11月至2019年11月之日交易資料為研究樣本,運用Fock et al. (2005) 與Lu et al. (2015)所提出之18種常見K線型態,以確保研究過程之客觀性與可重複性,並透過自動化掃描與交易模擬計算短期(3日)平均報酬率進行驗證。
    為符合實務上的合理性,研究結果接扣除0.25%之交易成本,並以偏態調整t檢定評估報酬顯著性,同時以ETF類別(市值型、股票型、策略型、商品與不動產型、債券型),以確認結果在不同市場環境下之穩健性。此外,本文亦考量資料窺探問題對技術分析研究結果的潛在影響,參考White (2000) 與 Sullivan et al. (1999) 方法進行多重檢定控制,以降低虛假發現率。
    實證結果顯示,部分K線型態於ETF市場中具備顯著且穩健的預測能力,尤其於特定ETF類別及市場條件下,能有效捕捉短期市場動能,提升績效。然而,不同K線型態於各類ETF與市場週期中的績效差異顯著,顯示技術分析策略在應用時需考量市場特性與策略調適的重要性。本研究提供實證支持K線技術分析於ETF市場之應用潛力,並為技術分析於被動投資工具市場的有效性檢驗提供理論基礎與實務參考。

    This study investigates the predictive power and practical implications of candlesticktechnical analysis in the ETF market. While candlestick patterns have been widely studied in stock markets, their validity in the rapidly growing and structurally unique ETF market remains underexplored. Using daily trading data of 332 U.S. ETFs from November 2014 to November 2019, this study applies 18 commonly used candlestick patterns defined by Fock et al. (2005) and Lu et al. (2015). An automated detection system and trading simulations are employed to evaluate short-term (three-day) average returns.
    To ensure practical relevance, all returns are adjusted for a 0.25% transaction cost, with statistical significance assessed via a skewness-adjusted t-test. Sub-sample analyses acrossETF categories—including equity, strategy-based, commodity & real estate, and bond ETFs—are conducted to test robustness. Furthermore, the study controls for data-snooping biases by adopting multiple testing adjustments proposed by White (2000) and Sullivan et al. (1999).
    The empirical results demonstrate that certain candlestick patterns possess significant and robust predictive ability in ETF markets, particularly under specific ETF categories and market conditions. However, substantial performance heterogeneity exists across patterns, implying the importance of market context and strategy adaptation. These findings provide empirical support for the application of candlestick analysis in ETF markets and contribute to the literature on the effectiveness of technical analysis in passive investment instruments.

    第一章 緒論 1  第一節 研究背景與動機 1  第二節 研究目的 2  第三節 研究流程 4  第四節 研究限制 6 第二章 文獻回顧 7  第一節 ETF的發展與現況 9  第二節 技術分析於ETF市場之應用與研究回顧 12  第三節 K線技術分析相關文獻 15  第四節 資料窺探相關文獻 20 第三章 研究方法 22  第一節 研究樣本說明 22  第二節 K 線型態定義 23  第三節 報酬率與交易成本 28  第四節 相關檢定與資料窺探 31 第四章 實證結果 34  第一節 全樣本實證結果 34  第二節 全樣本趨勢實證結果 38  第三節 分割樣本實證結果 47  第四節 結果整理與重點摘要 121 第五章 結論 123  第一節 研究結論 123  第二節 研究貢獻 124  第三節 研究限制與未來研究方向 125  第四節 總結 126 參考文獻 128

    Agarwal, V., Vashishtha, R., & Venkatachalam, M. (2017). Mutual fund transparency and corporate myopia. The Review of Financial Studies, 31(5), 1966–2003. https://doi.org/10.1093/rfs/hhx125

    Ben-David, I., Franzoni, F., & Moussawi, R. (2018). Do ETFs increase volatility? The Journal of Finance, 73(6), 2471–2535. https://doi.org/10.1111/jofi.12727

    Brock, W., Lakonishok, J., & LeBaron, B. (1992). Simple technical trading rules and the stochastic properties of stock returns. The Journal of Finance, 47(5), 1731–1764.

    Caginalp, G., & Laurent, H. (1998). The predictive power of price patterns. Applied Mathematical Finance, 5(3–4), 181–205. https://doi.org/10.1080/135048698334637

    Dannhauser, C. D. (2017). The impact of innovation: Evidence from corporate bond exchange-traded funds (ETFs). Journal of Financial Economics, 125(3), 537–560. https://doi.org/10.1016/j.jfineco.2017.06.002

    Droms, W. G., & Walker, D. A. (1995). Determinants of variation in mutual fund returns. Applied Financial Economics, 5(6), 383–389. https://doi.org/10.1080/758538597

    Fock, J. H., Klein, C., & Zwergel, B. (2005). Performance of candlestick analysis on intraday futures data. The Journal of Derivatives, 13(1), 28–40. https://doi.org/10.3905/jod.2005.580555

    Glosten, L., Nallareddy, S., & Zou, Y. (2021). ETF activity and informational efficiency of underlying securities. Management Science, 67(1), 22–47. https://doi.org/10.1287/mnsc.2019.3427

    Horton, M. J. (2009). Stars, crows, and doji: The use of candlesticks in stock selection. The Quarterly Review of Economics and Finance, 49(2), 283–294. https://doi.org/10.1016/j.qref.2007.10.005

    Hsu, P.-H., Hsu, Y.-C., & Kuan, C.-M. (2010). Testing the predictive ability of technical analysis using a new stepwise test without data snooping bias. Journal of Empirical Finance, 17(3), 471–484. https://doi.org/10.1016/j.jempfin.2010.01.001

    Ippolito, R. A. (1989). Efficiency with costly information: A study of mutual fund performance, 1965–1984. The Quarterly Journal of Economics, 104(1), 1–23. https://doi.org/10.2307/2937832

    Lai, H.-C., Tseng, T.-C., & Huang, S.-C. (2016). Combining value averaging and Bollinger Band for an ETF trading strategy. Applied Economics, 48(37), 3550–3557. https://doi.org/10.1080/00036846.2016.1142653

    Lettau, M., & Madhavan, A. (2018). Exchange-traded funds 101 for economists. The Journal of Economic Perspectives, 32(1), 135–154. https://doi.org/10.1257/jep.32.1.135

    Lo, A. W., & MacKinlay, A. C. (1990). When are contrarian profits due to stock market overreaction? The Review of Financial Studies, 3(2), 175–205. https://doi.org/10.1093/rfs/3.2.175

    Lu, T.-H., Chen, Y.-C., & Hsu, Y.-C. (2015). Trend definition or holding strategy: What determines the profitability of candlestick charting? Journal of Banking & Finance, 61, 172–183. https://doi.org/10.1016/j.jbankfin.2015.09.009

    Marshall, B. R., Young, M. R., & Cahan, R. (2008). Are candlestick technical trading strategies profitable in the Japanese equity market? Review of Quantitative Finance and Accounting, 31(2), 191–207. https://doi.org/10.1007/s11156-007-0068-1

    Marshall, B. R., Young, M. R., & Rose, L. C. (2006). Candlestick technical trading strategies: Can they create value for investors? Journal of Banking & Finance, 30(8), 2303–2323. https://doi.org/10.1016/j.jbankfin.2005.08.001

    Marta, T., & Riva, F. (2024). Do ETFs increase the comovements of their underlying assets? Evidence from a switch in ETF replication technique. Journal of Banking & Finance, 170, 107333. https://doi.org/10.1016/j.jbankfin.2024.107333

    Sullivan, R., Timmermann, A., & White, H. (1999). Data-snooping, technical trading rule performance, and the bootstrap. The Journal of Finance, 54(5), 1647–1691. https://doi.org/10.1111/0022-1082.00163

    White, H. (2000). A reality check for data snooping. Econometrica, 68(5), 1097–1126. https://doi.org/10.1111/1468-0262.00152

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE