| 研究生: |
鄭麒宏 Cheng, Chi-hong |
|---|---|
| 論文名稱: |
毛細管電泳晶片穩定度促進與其結合安培法對於神經傳導物質的檢測探討 Improvement of Electrophoresis Microchip and Its Detection in Neurotransmitter by Amperometry |
| 指導教授: |
張憲彰
Chang, Hsien-chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 毛細管電泳 、PC12 細胞 、PDMS的表面修飾 、神經傳導物質 |
| 外文關鍵詞: | capillary electrophoresis, neurotransmitters, PDMS modification, PC12 cells |
| 相關次數: | 點閱:97 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中風為現代人的十大死因之一,對於社會的各方面造成很大的影響。因此針對其機制和藥物治療的探討是刻不容緩的。現在利用一項整合型的技術-微流體晶片,其優點為所需樣本量少、分析時間快且具高效率的分離,所以有應用在細胞層級分析的潛力。使用細胞模式的實驗,好處在於可以在重複性的控制環境下,測量細胞在某特定外在刺激改變之下,生理途徑隨之反應形成的變化,造成傳導物質分泌的不同,得到其生理上的意義。此外,在檢測系統上,電化學偵測的高靈敏度、便宜且方便和其它系統整合,可利用它去偵測dopamine, catechol, histamine, nitric oxide等具有氧化還原性質之神經傳導物質。上述技術,欲將整個系統建立在一個微小的晶片上,做為一個藥物和細胞生理反應的實驗平台。但目前使用PDMS製成的毛細管微管道,其表面性質呈現疏水性,不容易使分析的溶液注入管道,分離的效能也比材質以玻片製成的晶片差,因此,有許多研究即在討論如何改善PDMS的性質。本篇是利用有機溶劑ethyl acetate和acetone萃洗PDMS,可將PDMS在聚合時產生的oligomers萃洗出來,再以氧電漿修飾管道表面,可有效改善微管道原本的疏水性,得到親水性的表面,比起以往單單只以氧電漿修飾的PDMS,維持較長時間的親水性。使用Current-Monitoring Method測量電滲透流的大小,得到電滲透流的大小是5.0 × 10-4 cm2/Vs,其效果可維持至少5天;此外,對於本晶片偵測條件的最佳化,採用緩衝液20 mM MES (pH 6.0); 分離電場強度100 V/cm ; 偵測電位0.7 V; 注入時間25 s。在此條件下去偵測神經傳導物質dopamine,目前可偵測至0.1 M,訊號響應時間約在分離後75 sec可以得到。
Stroke is the major reason that influences the health of people in modern society. Therefore, it is very important to investigate the pathological mechanism and protective method. The purpose of this paper is to investigate an integrated technique, capillary electrophoresis microchip, which includes the advantages of separated samples quickly, high efficiency, small volume of sample and low cost. Now it is applied to the analysis of cell scale. To use experiments of the cell model, we can get the more regular result under control. Cells secrete different concentrations of neurotransmitters under the stimulus. The electrochemistry is a high sensitive and convenient tool for detecting the neurotransmitters which have oxidative or reductive property such as dopamine, catechol, histamine, nitric oxide. We want to integrate these techniques on a chip to be a plate form for medicinal test and physiological mechanism. PDMS is extracted in a series of solvents designed to remove unreacted oligomers from the bulk phase. Second, the
oligomer-free PDMS is oxidized in a simple air plasma to improve the hydrophobic property. The electroosmosis flow is 5.0 × 10-4 cm2/Vs and it can last 5 days at least. We try many conditions to find the optimization of the microchip and then detect the 0.1 M dopamine and the signal appears in 75 sec after the separation when the experimental conditions are 20 mM MES buffer (pH 6.0), 25s injection time, 100V/cm separation voltage field, and 0.7 V detection voltage (vs. pseudo Pt).
1. Molinara G. F., Why model stroke, Stroke, 1988, 19, 1195-1197.
2. Pulsinelli W.A., Buchan A. The utility of animal ischemia models in predicting Pharmacotherapeutic response in the clinical setting, Cerebrovascular Diseases, 1989, 87-91.
3. Manz A., Graber N., Widmer M., Miniaturized total chemical analysis systems: a novel concept for chemical sensing, Sensors and Actuators B: Chemical, 1990, 1, 244-248.
4. Harrison D. J., Manz A., Fan Z., Luedi H., Widmer H. M., Capillary electrophoresis and sample injection systems integrated on a planar glass chip, Anal. Chem., 1992, 64, 1926-1932.
5. Charles S. H., Microchip Capillary Electrophoresis, Totowa, New Jersey, 2006.
6. Roberts, M. A., Rossier, J. S., Bercier, P., Girault, H., UV laser machined polymer substrates for the development of microdiagnostic systems, Anal. Chem., 1997, 69, 2035-2042.
7. Effenhauser, C. S., Bruin, G. J. M., Paulus, A., Ehrat, M., Integrated capillary electrophoresis on flexible silicone microdevices: analysis of DNA restriction fragments and detection of single DNA molecules on microchips, Anal. Chem., 1997, 69, 3451-3457.
8. McCormick R. M., Nelson R. J., Alonso-Amigo M. G., Benvegnu J., Hooper H. H., Microchannel electrophoretic separations of DNA in injection-molded plastic substrates, Anal. Chem., 1997, 69, 2626-2630.
9. Martynova L., Locascio L. E., Gaitan M., Kramer G. W., Christensen R. G., MacCrehan W. A., Fabrication of plastic microfluid channels by imprinting methods, Anal. Chem., 1997, 64, 4783-4789.
10. Duffy C. D., McDonald J. C., Olivier J. A., Whitesides G. M., Rapid prototyping of microfluidic systems in poly(dimethylsiloxane), Anal. Chem., 1998, 70, 4974-4984.
11. Wang C. H., Lee G. B., Pneumatically driven peristaltic micropumps utilizing serpentine-shape channels, J. Micromech. Microeng., 2006, 16, 341-348.
12. Mcdonald J. C., Whitesides G. M., Poly(dimethylsiloxane) as a material for fabricating microfluidic devices, Accounts of Chemical Research, 2002, 35, 491-499.
13. Yasuyuki S., Teruo F., Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes, Biotechnol. Prog., 2004, 20, 750-755.
14. McDonald J. C., Duffy D. C., Anderson J.R., Fabrication of a configurable, single-use microfluidic device, Electrophoresis, 2000, 21, 107-115.
15. Effenhauser C. S., Bruin, G. J., Paulus, A., Intergrated chip-based capillary electrophoresis, Electrophoresis, 1987, 18, 2203-2213
16. Honest M., Jin H. K., Kwanseop L., Nokyoung P., Jong H. H., Surface modification of poly(dimethylsiloxane) microchannels,
Electrophoresis, 2003, 24, 3607-3619
17. Lai J. Y., Lin Y. Y., Denq Y. L., Shyu S. S., Chen J. K., Journal of Adhesion Science and Technology, 1996, 70, 231-242.
18. Kim J.; Chaudhury M. K.; Owen M. J., Hydrophobic recovery of polydimethylsiloxane elastomer exposed to partial electrical discharge, Journal of Colloid and Interface Science, 2000, 226, 231-236.
19. Luo Y., Huang B., Wu H., Richard N. Z., Controlling electroosmotic flow in poly(dimethylsiloxane) separation channels by means of prepolymer additives, Anal. Chem., 2006, 78, 4588-4592
20. Ocvirk G., Munroe M., Tang T., Oleschuk R., Westra K., Harrison D. J., Capillary electrophoresis at the omics level: Towards systems biology, Electrophoresis, 2000, 27, 107-115.
21. Dou Y., Bao, N., Xu, J., Chen, H., A dynamically modified microfluidic poly(dimethylsiloxane) chip with electrochemical detection for biological analysis, Electrophoresis, 2002, 23, 3558-3566.
22. Katayama H., Ishihama Y., Asakawa N., Stable capillary coating with successive multiple ionic polymer layers, Anal. Chem., 1998, 70, 2254-2260.
23. Katayama, H., Ishihama, Y., Asakawa, N., Stable cationic capillary coating with cuccessive multiple ionic polymer layers for capillary electrophoresis, Anal. Chem., 1998, 70, 5272-5277.
24. Hu S. W., Ren X. Q., Bachman M., Sims C. E., Li G. P., Allbritton N., Surface modification of poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting, Anal. Chem., 2002, 74, 4117-4123.
25. Chen L., Ren J., Bi R., Chen D., Ultraviolet sealing and poly(dimethylacrylamide) modification for poly(dimethylsiloxane)/glass microchips, Electrophoresis, 2004, 25, 914-921.
26. Hu S., Ren, X., Backman M., Sims C. E., Li G. P., Allbritton N., Surface modification of poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting, Anal. Chem., 2002, 74, 4117-4123.
27. Lee J. N., Park C., G. M. Whitesides, Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices, Anal. Chem., 2003, 75, 6544-6554.
28. Heiger D. N., High Performance capillary electrophoresis-an
introduction, Hewlett-Packard Company, 1992.
29. Allen J. B., Larry R. F., Electrochemical methods, 2nd edition, 2001.
30. Eric. P. W., et al., Vander’s human physiology, 10th ed., Mc Graw Hill, 2006.
31. Zeng, Y., Chen, H., Pang, D. W., Wang, Z. L., Cheng, J. K., Microchip capillary electrophoresis with electrochemical detection, Anal. Chem., 2002, 74, 2441-2445.
32. Wang, J., Tian, B., Sahlin, E., Micromachined electrophoresis chips with thick-film electrochemical detectors, Anal. Chem., 1999, 71, 5436-5440.
33. Lapos, J. A., Manica, D. P., Ewing, A, G., Dual fluorescence and electrochemical detection on an electrophoresis microchip, Anal. Chem., 2002, 74, 3348-3353.
34. Kong, Y., Chen, H., Wang, Y., Soper, S. A., Fabrication of a gold microelectrode for amperometric detection on a polycarbonate electrophoresis chihp by photodirected electroless plating, Electrophoresis, 2006, 27, 2940-2950.
35. Woolley A. T., Lao K., Alexander N. G., Richard A. M., Capillary electrophoresis chips with integrated electrochemical detection, Anal. Chem., 1998, 70, 684-688.
36. Chen D.C., Hsu F.L., Zhan D.Z., Chen C.H., Palladium film decoupler for amperometric detection in electrophoresis chips, Anal. Chem., 2001, 73, 758-762.
37. Wu C. C., Wu R. G., Huang J. G., Lin Y. C., Chang H. C., Three-electrode electrochemical detector and platinum film decoupler integrated with a capillary electrophoresis microchip for amperometric detection, Anal. Chem., 2003, 75, 947-952.
38. Lloyd A. G., Arthur S. T., Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor, Proc. Natl. Acad. Sci., 1976, 73, 2424-2428.
39. Joëlle A H., Kenzo T., Dragan M., Christl R., Jeffery L. B., John M H., Development of an ischemic tolerance model in a PC12 cell line, J. Cereb. Blood Flow Metab., 2005, 25, 154-162.
40. Victoria A. B., Timothy R. C., Extracellular ATP triggers two functionally distinct calcium signaling pathways in PC12 cells, Journal of Cell Science, 1994, 107, 451-462.
41. Michelle W. L., Dana M. S., Martina R. S., A microchip-based system for immobilizing PC 12 cells and amperometrically detecting catecholamines released after stimulation with calcium, Electroanalysis, 2005, 17, 1171-1180.
42. Terabe S., Otsuka K., Ichikawa K., Tsuchiya A., Ando T., Electrokinetic separations with micellar solutions and open-tubular capillaries, Anal. Chem., 1984, 56, 111-113.
43. Xiaohua H., Manuel J. G., Richard N. Z., Current-monitoring method for measuring the electroosmotic flow rate in capillary zone electrophoresis, Anal. Chem., 1988, 60, 1837-1838.
44. Cheng H., Huang W. H., Chen R. S., Wang Z. L., Cheng J. K.,Carbon fiber nanoelectrodes applied to microchip electrophoresis amperometric detection of neurotransmitter dopamine in rat pheochromocytoma (PC12) cells, Electrophoresis 2007, 28, 1579-1586.
45.Stephen C. J., Roland H., Lance B. K., Warmack R., Mlchael R., Effects of injection schemes and column geometry on the performance of microchip electrophoresis devices, Anal. Chem., 1994, 66, 1107-1113
46. Zhang L., Qv S., Wang Z., Cheng J., Determination of dopamine in single rat pheochromocytoma cell by capillary electrophoresis with amperometric detection, J. Chromatogr. B, 2003, 792, 381-385.
47. Chen D. C., Hsu F. L., Zhan D. Z., Chen C. H., Palladium film decoupler for amperometric detection in electrophoresis chips, Anal. Chem., 2001, 73, 758-762.
48. Quan D., Ho J., Jong S., Kim D., Park H. S., Cha G. S., Nam.H., Electrochemical determination of nitrate with nitrate reductase immobilized electrodes under ambient air, Anal. Chem., 2005, 77, 4467-4473.