| 研究生: |
曾登琳 Zeng, Deng-Lin |
|---|---|
| 論文名稱: |
虛擬量測系統的信心度評估 Evaluating Reliance Level of a Virtual Metrology System |
| 指導教授: |
鄭芳田
Cheng, Fan-Tien 蘇育全 Su, Y.-C. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造工程研究所 Institute of Manufacturing Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 42 |
| 中文關鍵詞: | 相似程度 、個體相似性指標 、可製造性 、整體相似度指標 、虛擬量測 、信心水準 、信心指標 |
| 外文關鍵詞: | reliance index (RI), global similarity index (GSI), reliance level, manufacturability., individual similarity index (ISI), Virtual metrology, degree of similarity |
| 相關次數: | 點閱:194 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出一個信心指標的機制與方法,藉以評估虛擬量測系統的信心度。該機制與方法藉由分析生產設備的製程參數資料,計算出一個介於零與壹之間的信心值,以判斷虛擬量測系統推估結果是否可以被信賴。本研究亦提出計算信心指標門檻值的方法,若信心指標值大於此門檻時,代表該虛擬量測之推估結果可以被信賴;反之,則代表該推估結果的可信度較低,需要進一步確認。除上述信心指標外,本研究亦提出製程參數相似度指標,該指標之定義為目前輸入之製程參數與推估模型用以訓練建模之所有參數的相似程度。而參數相似度指標可分為: 整體相似度指標及個體相似性指標,此相似度指標將被用以輔助信心指標之判斷及找尋發生異常的製程參數。因此,可解決虛擬量測系統可製造性的問題。本論文應用本信心度評估機制與方法,並以300-mm半導體晶圓廠之蝕刻機台製程為例,實驗結果證明此方法適用於具有虛擬量測系統之生產設備 (如半導體與TFT-LCD廠之生產製程設備的虛擬量測系統)。
This work proposes a novel method for evaluating the reliability of a virtual metrology system (VMS). The proposed method calculates a reliance index (RI) value between 0 and 1 by analyzing the process data of production equipment to determine the reliability of the virtual metrology results. This method also defines an RI threshold. If an RI value exceeds the threshold, the conjecture result is reliable; otherwise, the conjecture result needs to be further examined. Besides the RI, the method also proposes process data similarity indexes (SIs). The SIs are defined to assess the degree of similarity between the input set of process data and those historical sets of process data used to establish the conjecture model. The proposed method includes two types of SIs: global similarity index (GSI) and individual similarity index (ISI). Both GSI and ISI are applied to assist the RI in gauging the reliance level and locating the key parameter(s) that cause major deviation, thus resolving the VMS manufacturability problem. An illustrative example involving 300-mm semiconductor foundry etching equipment in Taiwan is presented. Experimental results demonstrate that the proposed method is applicable to the VMS of production equipment (such as that for semiconductor and TFT-LCD).
[1] 2003 International Technology Roadmap for Semiconductors (ITRS), Dec. 2003. http://public.itrs.net/
[2] Y.-C. Chang and F.-T. Cheng, “Application Development of Virtual Metrology in Semiconductor Industry, in Proc. the 31st Annual Conference of the IEEE Industrial Electronics (IECON 2005), Raleigh, NC, Nov. 2005, pp. 124-129.
[3] P.-H. Chen, S. Wu, J.-S. Lin, F. Ko, H. Lo, J. Wang, C.-H. Yu, and M.-S. Liang, “Virtual Metrology: a Solution for Wafer to Wafer Advanced Process Control,” in Proc. 2005 IEEE International Symposium on Semiconductor Manufacturing, San Jose, CA, Sept. 2005, pp.155-157.
[4] Y.-C. Su, M.-H. Hung, F.-T. Cheng, and Y.-T. Chen, “A Processing Quality Prognostics Scheme for Plasma Sputtering in TFT-LCD Manufacturing,” IEEE Transactions on Semiconductor Manufacturing, vol. 19, no. 2, pp. 183-194, May 2006.
[5] Y.-C. Su, F.-T. Cheng, M.-H. Hung, and H.-C. Huang, “Intelligent Prognostics System Design and Implementation,” IEEE Transactions on Semiconductor Manufacturing, vol. 19, no. 2, pp. 195-207, May 2006.
[6] Y.-J. Chang, Y. Kang, C.-L. Hsu, C.-T. Chang, and T. Y. Chan, “Virtual Metrology Technique for Semiconductor Manufacturing,” in Proc. 2006 International Joint Conference on Neural Networks, July 2006, pp. 5289-5293.
[7] M.-H. Hung, T.-H. Lin, F.-T. Cheng, and R.-C. Lin, “A Novel Virtual Metrology Scheme for Predicting CVD Thickness in Semiconductor Manufacturing,” IEEE/ASME Transactions on Mechatronics, vol. 12, no. 3, pp. 308-316, June 2007.
[8] F.-T. Cheng, H.-C Huang, and C.-A. Kao, “Dual-phase virtual metrology scheme,” to appear in IEEE Transactions on Semiconductor Manufacturing.
[9] G. Chryssolouris, M. Lee, and A. Ramsey, “Confidence Interval Prediction for Neural Network Models,” IEEE Transactions on Neural Networks, vol. 7, no. 1, pp. 229-232, 1996.
[10] I. Rivals, and L. Personnaz, “Construction of Confidence Intervals for Neural Networks Based on Least Square Estimation,” Neural Networks, vol. 13, pp.463-484, 2000.
[11] D. Drurdjanovic, J. Lee, and J. Ni, “Watchdog Agent -- An Infotronics-Based Prognostics Approach for Product Performance Degradation Assessment and Prediction,” Advanced Engineering Informatics, vol. 17, pp.109-125, 2003.
[12] J. Yan and J. Lee, “Introduction of Watchdog Prognostics Agent and Its Application to Elevator Hoistway Performance Assessment,” Journal of the Chinese Institute of Industrial Engineers, vol. 22, no. 1, pp. 56-63, 2005.
[13] A. Bovas and A. Mulavath, “Discussion-A Review and Analysis of the Mahalanobis-Taguchi system,” Technometrics, vol. 45, no.1, pp.22-25.
[14] 王慧君, “Analysis of MTS: Application of Credit Scoring” 國立交通大學工業工程研究所博士論文, 2004.
[15] J. L. Elman, “Finding Structure in Time,” Cognitive Science, Volume 14, pp. 179-211, 1990.
[16] D. R. Anderson, D. J. Sweeney, T. A. Williams, and J.-C. Chen, Statistics for Business and Economics- A Practical Approach, Singapore: Thomson, 2006.
[17] P. C. Mahalanobis ,“On the Generalized distance in statistics,” Proceeding National Institute of Science of India, pp.49-55, 1936.
[18] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, San Francisco, CA: Morgan Kaufman, 2005.
[19] S. Sharma, Data Mining: Practical Machine Learning Tools and Techniques, San Francisco, CA: Morgan Kaufman, 2005.
[20] S. Haykin, Neural Networks—A Comprehensive Foundation. Englewood Cliffs, NJ: Prentice-Hall, 1999.