| 研究生: |
吳鑑庭 Wu, Chien-Ting |
|---|---|
| 論文名稱: |
核/殼型功能性高分子微球的製備及其光學性質之探討 Preparation of core/shell functional polymer microspheres and its optical characterization |
| 指導教授: |
陳志勇
Chen, Chuh-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 核/殼型功能性高分子微球 、擴散粒 、藍光吸收 、紅外線吸收 |
| 外文關鍵詞: | core/shell functional polymer microspheres, diffusive agent, blue light absorption, IR blocking |
| 相關次數: | 點閱:63 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以分散聚合法合成出粒徑2μm的聚苯乙烯(PS)及1.8μm聚苯乙烯-甲基丙烯酸甲酯(PS-MMA)圓球狀顆粒,再利用SLS-SFS起始的方式將乙烯系單體縮水甘油甲基丙烯酸酯-亞胺乙二酸(GMA-IDA)接枝到顆粒表面形成核/殼狀結構顆粒,接著將二氧化鈦(TiO2)奈米顆粒吸附到PS顆粒表面形成PSGT擴散粒。藉由SEM觀察,可以看出二氧化鈦奈米顆粒均勻吸附在表面;EDS元素分析可以證實其表面確實有吸附二氧化鈦奈米顆粒,後續利用水性樹酯與PSGT擴散粒混和塗佈於PET薄膜上形成光擴散膜。擴散粒顆粒表面上具有高折射率的二氧化鈦奈米顆粒,能使光線在薄膜中具有較多的折射、反射及散射的現象,使擴散粒具有更佳的光擴散效果。目前市面上的擴散膜無法同時達到高穿透度及高霧度的效果,而本研究所製備的PSGT光擴散膜藉由穿透度霧度儀量測可發現隨著顆粒濃度的增加,薄膜的霧度有明顯的提升,但對於全光穿透度的影響較不明顯,當PSGT擴散粒的重量百分比達30%時,薄膜具有最佳的霧度81.95%及88.18%的全光穿透度,可同時達到高霧度及高穿透度的效果。後續再將藍光吸收劑4-苯偶氮基苯酚(PAP)導入,藉由擴散粒的特性使光線在薄膜之中來回反射、散射達到增加光徑的效果,進而增加光與藍光吸收劑接觸的機率達到增加藍光吸收並使光均勻擴散的效果。藉由UV-VIS的量測可發現導入擴散粒的藍光吸收薄膜,在相同的藍光吸收劑含量下,添加20%的PSGT擴散粒可以有效地增加約12%的藍光吸收並同時保有高霧度的效果。另一方面,本研究藉由合成出與樹酯折射率相近的PSMMA顆粒作為載體,將氧化銫鎢(CWO)紅外線吸收顆粒吸附至PSMMA顆粒表面,藉由UV-VIS以及穿透度霧度儀的量測結果可以看出PSMCWO可以有效地增加可見光波段的穿透率,並藉由雙面塗佈的方式降低介面之間的折射率差距減少介面之間的反射,能再次使其薄膜的穿透率提高,且不影響到紅外線吸收的效果。
In the first part of the research, we prepared polystyrene (PS) and polystyrene-methyl methacrylate (PS-MAMA) microspheres by dispersion polymerization. After that, we grafted the Glycidyl methacrylate-Iminodiacetic acid (GMA-IDA) monomer onto the PS and PSMMA particles by SLS-SFS initiated seed polymerization to form a core/shell structure. With the property of the GMA-IDA monomer, we can adsorb the TiO2 and CWO (IR absorber) nanoparticles onto the microspheres to form PSGT (diffusive agent) and PSMCWO (IR blocking particles). Afterward, we dispersed the PSGT/PSMCWO into the epoxy and coated the mixture onto the PET film to form the light diffuser film and IR blocking film. Compare to the commercial product, our light diffuser film has higher a haze without obvious transmittance declined and the IR blocking film has higher transmittance. Then, we add the 4-phenylazophenol (PAP) blue light absorber into the epoxy as the dispersed phase to combine with the diffusive agent PSGT. From the UV-vis spectrum, we found that as we increase the weight percentage of the PSGT the transmittance of the blue light (at 450nm) will decrease. In other words, the more of the PSGT was added the more of the blue light will be blocked. After adding 20% PSGT, it can block about 12% more blue light.
1. 周曉英, et al., 液晶显示器衬垫用大粒径单分散性交联聚苯乙烯微球的制备. 石油化工, 2009: p. 38.
2. 趙靜賢 and 李巧玲, 磁性生物高分子微球的研究. 上海化工, 2008: p. 6.
3. 劉瑤, 張海麗, 韓徳艷, 葡萄糖磁性微球在生醫領域的應用. 化學與生物工程, 2007: p. 4.
4. Kuo, H.P., M.Y. Chuang, and C.C. Lin, Design correlations for the optical performance of the particle-diffusing bottom diffusers in the LCD backlight unit. Powder Technology, 2009. 192(1): p. 116-121.
5. 王文獻, 吳耀庭, and 溫俊祥, LCD光學擴散板材料技術簡介. 財團法人工業技術研究院, 2006. 234.
6. Feng, Y., et al., Preparation and characterization of polyimide/ladder like polysiloxane hybrid films. Materials Letters, 2010. 64(24): p. 2710-2713.
7. Park, H.-G. and D.-Y. Khang, High-performance light diffuser films by hierarchical buckling-based surface texturing combined with internal pores generated from physical gelation induced phase separation of binary polymer solution. Polymer, 2016. 99: p. 1-6.
8. Odian, G., Emulsion Polymerization, in Principles of Polymerization. WILEY-INTERSCIENCE. p. 350-371.
9. Arshady, R. and A. Ledwith, Suspension polymerisation and its application to the preparation of polymer supports. Reactive Polymers, Ion Exchangers, Sorbents, 1983. 1(3): p. 159-174.
10. Shen, S., E.D. Sudol, and M.S. El-Aasser, Dispersion polymerization of methyl methacrylate: Mechanism of particle formation. Journal of Polymer Science Part A: Polymer Chemistry, 1994. 32(6): p. 1087-1100.
11. Barrett, K.E.J., Dispersion polymerisation in organic media. British Polymer Journal, 1973. 5(4): p. 259-271.
12. Chen, C.-W. and C.-Y. Chen, Preparation of monodisperse polystyrene microspheres: Effect of reaction parameters on particle formation, and optical performances of its diffusive agent application. Colloid and Polymer Science, 2009. 287: p. 1377-1389.
13. Chen, C.-W. and C.-Y. Chen, Preparation of monodisperse polystyrene microspheres and optical performance of its diffusive-agent application. Journal of the Society for Information Display, 2007. 15(10): p. 845-851.
14. Hecht, E., Optics 4th edition. Optics 4th edition by Eugene Hecht Reading. 2001.
15. Mie, G., Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik, 1908. 330(3): p. 377-445.
16. Miyazaki, D., Fresnel Equations, in Computer Vision: A Reference Guide, K. Ikeuchi, Editor. 2014, Springer US: Boston, MA. p. 305-307.
17. Oh, J.H., et al., Synthesis of narrow-band red-emitting K 2 SiF 6: Mn 4+ phosphors for a deep red monochromatic LED and ultrahigh color quality warm-white LEDs. Journal of Materials Chemistry C, 2015. 3(3): p. 607-615.
18. Huang, J., et al., Facile synthesis of a thermally stable Ce3+:Y3Al5O12 phosphor-in-glass for white LEDs. CrystEngComm, 2015. 17(37): p. 7079-7085.
19. Wang, C.-Y., et al., Ce-Doped La3Si6.5Al1.5N9.5O5.5, a Rare Highly Efficient Blue-Emitting Phosphor at Short Wavelength toward High Color Rendering White LED Application. ACS Applied Materials & Interfaces, 2017. 9(27): p. 22665-22675.
20. Zhou, Y., et al., Colloidal carbon dots based highly stable luminescent solar concentrators. Nano Energy, 2018. 44: p. 378-387.
21. Song, E., et al., Highly Efficient and Stable Narrow-Band Red Phosphor Cs2SiF6:Mn4+ for High-Power Warm White LED Applications. ACS Photonics, 2017. 4(10): p. 2556-2565.
22. Ueda, T., et al., Eye damage control by reduced blue illumination. Experimental Eye Research, 2009. 89(6): p. 863-868.
23. Kuse, Y., et al., Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light. Scientific Reports, 2014. 4(1): p. 5223.
24. O'Hagan, J.B., M. Khazova, and L.L.A. Price, Low-energy light bulbs, computers, tablets and the blue light hazard. Eye, 2016. 30(2): p. 230-233.
25. Behar-Cohen, F., et al., Light-emitting diodes (LED) for domestic lighting: Any risks for the eye? Progress in Retinal and Eye Research, 2011. 30(4): p. 239-257.
26. Park, S.J., H.K. Yang, and B.K. Moon, Ultraviolet to blue blocking and wavelength convertible films using carbon dots for interrupting eye damage caused by general lighting. Nano Energy, 2019. 60: p. 87-94.
27. contributors, W., Electromagnetic radiation --- {Wikipedia}{,} The Free Encyclopedia. 2020.
28. Bozukova, D., et al., Evaluation of a class of polyurethane materials for intraocular lens manufacturing. J Biomed Mater Res B Appl Biomater, 2015. 103(6): p. 1274-86.
29. Gorgolis, G. and D. Karamanis, Solar energy materials for glazing technologies. Solar Energy Materials and Solar Cells, 2016. 144: p. 559-578.
30. Yin, R., P. Xu, and P. Shen, Case study: Energy savings from solar window film in two commercial buildings in Shanghai. Energy and Buildings, 2012. 45: p. 132-140.
31. Parkin, I.P. and T.D. Manning, Intelligent Thermochromic Windows. Journal of Chemical Education, 2006. 83(3): p. 393.
32. Guo, C., et al., Facile synthesis of homogeneous CsxWO3 nanorods with excellent low-emissivity and NIR shielding property by a water controlled-release process. Journal of Materials Chemistry, 2011. 21(13): p. 5099-5105.
33. Choi, J., et al., Preparation of quaternary tungsten bronze nanoparticles by a thermal decomposition of ammonium metatungstate with oleylamine. Chemical Engineering Journal, 2015. 281: p. 236-242.
34. Hernandez-Sanchez, B.A., et al., Morphological and Phase Controlled Tungsten Based Nanoparticles: Synthesis and Characterization of Scheelite, Wolframite, and Oxide Nanomaterials. Chemistry of Materials, 2008. 20(21): p. 6643-6656.
35. contributors, W., Solar irradiance --- {Wikipedia}{,} The Free Encyclopedia. 2020.
36. Mohammad, A., Synthesis, Separation and Electrical Properties of WO3-x Nanopowders via Partial Pressure High Energy Ball Milling. Acta Physica Polonica A - ACTA PHYS POL A, 2009. 116.
37. Takeda, H. and K. Adachi, Near Infrared Absorption of Tungsten Oxide Nanoparticle Dispersions. Journal of the American Ceramic Society, 2007. 90(12): p. 4059-4061.
38. 張家瑜, 賴英煌, 表面電漿現象及其應用. 科學發展, 2015: p. 6.
39. 陳經文, 利用特殊表面起始聚合反應系統製備核/殼形功能性高分子微球及其應用. 國立成功大學化學工程系博士論文, 2010.
校內:2025-07-27公開