簡易檢索 / 詳目顯示

研究生: 李承遠
Lee, Cheng-Yuan
論文名稱: 動樑式加熱爐內鋼胚之三維熱傳分析
3-D Heat Transfer Analysis of Slab in a Walking-Beam Type Reheating Furnace
指導教授: 張錦裕
Jang, Jiin-Yuh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 78
中文關鍵詞: 數值模擬燃燒輻射熱傳加熱爐
外文關鍵詞: Numerical, Combustion, Radiation heat transfer, Furnace
相關次數: 點閱:99下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋼軋延製程前,鋼胚必須再加熱。鋼胚在加熱爐加熱過程中,溫度分佈均勻性會影響後續軋延製程的順暢性及產品品質,因此加熱爐之溫控技術為製程能力提升的關鍵技術。中鋼公司運轉中之加熱爐隨著爐齡增長而面臨改造的需求,為提升加熱爐之效能,急需建立完整加熱爐之溫控核心技術。
    本文利用數值方法研究動樑式加熱爐內流場分析和鋼胚的受熱情形,把鋼胚視為一高黏滯係數的流體進行模擬,將鋼胚和爐內高溫氣體進行耦合,進而得到加熱爐內流場分佈、速度場分佈、以及鋼胚溫度分佈。整體三維加熱爐模型包含燃燒噴嘴、靜動樑系統、爐壁厚度、鋼胚等等,全文分成兩個物理模型分別為全尺寸模組和簡化五分之一模組。模擬結果顯示兩個物理模型得到的誤差經比較過後差距不大,全尺寸模組和簡化五分之一模組在第一加熱區、第二加熱區及均溫區鋼胚溫度誤差均小於10%,因此參數分析選用簡化五分之一模組進行探討。
    研究參數包含不同燃料流率(0.48kg/s及0.53kg/s)以及改變墊塊(skid button)高度,分別為60mm、90mm及120mm下進行數值運算,進而探討不同參數下對鋼胚溫度均勻性的影響。結果指出鋼胚所吸收的熱能超過90%的熱能來自於熱輻射傳遞,只有少部份來自對流,加熱爐效率約在65%,而鋼胚下表面會有受熱不均勻的情形,主要原因來自於靜動樑輻射遮蔽效應,另一原因為冷卻系統也會藉由墊塊從鋼胚下表面帶走熱量而讓該接觸點產生溫度最低點,這種鋼胚上下表面溫度不均勻現象稱為冷痕(skid mark)。結果顯示在墊塊高度120mm、90mm和60mm下,鋼胚上下表面溫度最大差距依序為70.4K、81.2K和105K,此乃因墊塊高度增加,會降低輻射遮蔽效應,使得冷痕現象獲得改善。此外,當入口流率增加為0.53kg/s時,爐溫和鋼胚溫度因為流率增加而提高,冷痕溫度為70K,而當流率為0.48kg/s時,冷痕溫度為81.4K,鋼胚的溫度均勻性也會有所提升。

    This thesis numerically analyzed the flow field in the walking-beam-type reheating furnace and heat transfer in the slab. The slab is modeled as a laminar flow having a high viscosity. The temperature distributions of the slab and velocity distributions of the gas mixture are obtained through a coupled calculation. The geometric model takes care of all components of the furnace, including the burners, the walking-beam systems, furnace thickness, slab, and so on. There are two physical models considered in this study: full-scale module and simplified one-fifth module. For both models, the numerical predictions of the slab temperature error are less than 10 %compared with those of experimental data. The numerical results showed the radiation heat transfer dominates the heating process in the combustion furnace; it is around 90% of total input heating energy only few by convection. The furnace efficiency is about 65%. The temperatures of the slab on the upper surface are higher than those at lower surface due to the shield effect by the walking beams. Furthermore, the results also revealed when the skid button height is 60mm, 90mm, 120mm, respectively, the slab largest temperature difference is 70.4K, 81.2K, 105K. It means the slab skid mark can be improved by increasing the height of the skid button. Furthermore, when the fuel inlet flow rate from is increased from 0.48 kg/s to 0.53kg/s, the skid mark temperature difference is decreased from 81.2K to 70K.

    目錄 摘要…………………………………………………………………...…II Abstract…………………………………………………………...….…IV 誌謝………………………………………………………..……………XI 目錄………………………………………………………………….....XII 表目錄…………………………………………………………….......XIV 圖目錄…………………………………………………………...…….XV 符號說明………………………………………………………….....XVII 第一章緒論………………………………………………………………1 1.1 前言及研究目的…………………………………………….1 1.2 文獻回顧與探討…………………………………………….3 1.3 本文架構………………………………………………...…..7 第二章理論分析………………………………………………………..12 2.1 加熱爐模型………………………………………….……..12 2.2 統御方程式……………………………………………..….13 2.3 邊界條件………………………………………………..….20 第三章數值分析……………………………………………………..…37 3.1 通用守恒方程式……………………………………...……37 3.2 有限容積法……………………………………………...…38 3.3 SIMPLEC演算法…………………………………………41 3.4 邊界條件之離散…………………………………………...44 3.5 解題流程及格點測試……………………………………...45 3.6 收斂條件…………………………………………………...45 第四章結果與討論………………………………………………..……50 4.1 全尺寸加熱爐及簡化加熱爐綜合分析………………...…50 4.2 改變入口流率及墊塊高度對冷痕現象的效應…………...55 第五章結論…………………………………………………………..…73 參考文獻………………………………………………………………..75

    1. Marino P., Pignotti A. and Solis D., “Control of pusher furnace s for steel slab reheating using a numerical model,” Latin American Applied Research, Volume 34, pp. 249-255, 2004.
    2. Ford R., Suryanarayana N.V., and Johnson J.H.,“Heat-transfer model for solid-slab/water-cooled skid pipe in reheat furnace,” Ironmaking and Steelmaking 3,pp. 140-146, 1980.
    3. Zongyu L., Barr P.V., and Brimacombe J.K., “Computer simulation of the slab reheating furnace,” Canadian Metallurgical Quarterly 27,pp. 187-196, 1988.
    4. Chapman K.S., Ramadhyani S., and Viskanta R., “Two-dimensional modeling andparametric studies of heat transfer in a direct-fired furnace with impinging jets,” Combust. Sci. and Tech. 97,pp. 99-120, 1994.
    5. Zhang C., Ishii T., and Sugiyama S., “Numerical modeling of the thermal performance of regenerative slab reheat furnaces,” Numer. Heat Transfer 32,pp. 613-631, 1997.
    6. Kolenco T., Glogovac B. and Jaklic A., “An analysis of a heat transfer model for situations involving gas and surface radiative heat transfer,” Communications in numerical methods in engineering, Volume 15, pp. 349-365, 1999.
    7. Lindholm D. and Leden B., “A finite element method for solution of the three-dimensional time-dependent heat-conduction equation with application for heating of steels in reheating furnaces,” Numer. Heat Transfer A35,pp. 155-172, 1999.
    8. Kim J.G. and Huh K.Y., “Prediction of transient slab temperature distribution in the re-heating furnace of a walking-beam type for rolling of steel slabs,” ISIJ Inter. 40, pp. 1115-1123, 2000.
    9. Uede M., Tanaka K., Imada M., and Murakami K., “The optimization for the reheating furnace with the technique of the highly preheated air combustion,” Proc. Int. Joint Power Generation Conference 2000-15082.
    10. KimJ.G. and Huh K.Y., “Three-dimensional analysis of the walking-beam-type slab reheating furnace in hot strip mills,” Numer. Heat Transfer A38, pp. 589-609, 2000.
    11. Lin. M.S., ChoiC.K.,and Leung C.W., “Startup analysis of oil-fired furnace – the smoothing Monte Carlo model approach,” Heat and Mass Transfer 37, pp. 449-457 , 2001.
    12. Delabroy O., Louedin O.,Tsiava R., Gouefflec G. Le, and Bruchet P., “Oxycombustion for reheating furnaces: major benefits based on ALROLLTM, a mature technology,” AFRC/JFRC/IEA 2001 Joint Int. Combust. Symp., Hawaii, Sep. pp. 9-12, 2001.
    13. Marketta A.M., Osterman P.J., and Luomala M.J., “Numerical study of the pusher-type slab reheating furnace,” Scandinavian J. Metallurgy 31, pp. 81-87, 2002.
    14. Tang Y., Laine J., Fabritius T., and Harkki J., “The modeling of the gas flow and its influence on the scale accumulation in the steel slab pusher-type reheating furnace,” ISIJ Int. 43, pp.1333-1341, 2003.
    15. Yamaguchi H., Shida Y., and Amako S., “New Skid Button Design for Hot Strip Mill Reheating Furnaces,” Iron and Steel Technology, Volume 1,Issue 5, pp. 57-65, 2004.
    16. Jaklic A., Vode F., and Kolenko T., “Online simulation model of the slab-reheating process in a pusher-type furnace,” Applied thermal engineering, Volume 27, Issue 5-6, pp. 1105-1114, 2007.
    17. Unal C, Murat T., and Sedat S., “Transient Temperature Analysis of Slab in Erdemir,” Journal of Iron and Steel Research, International, Volume 15, Issue 2, pp. 43 – 45, 2008.
    18. 謝嘉聰, “動樑式鋼胚加熱爐之熱對流模擬分析,”機械工程研究所,國立台灣大學,2008.
    19. Hsieh C.T., Huang M.J.,Lee S.T. and Wang C.H., “Numerical Modeling of a Walking-Beam-Type Slab Reheating Furnace,” Numerical Heat Transfer Part A: Application, Volume 53, Issue 9 , pp. 966-981 , 2008.
    20. Seung W.B., Sang H.H., and Man Y.K.,“Transient radiative heating characteristics of slabs in walking beam type reheating furnace,”International Journal of Heat and Mass Transfer, Volume 52, pp.1005-1011, 2009.
    21. Sang H.H., Chang D., and Chang Y. K.,“A numerical analysis of slab heating characteristics in a walking beam type reheating furnace,” International Journal of Heat and Mass Transfer, Volume 53, Issue19-20, pp. 3855–3861, 2010.
    22. Hsieh C.T., Huang M.J., Lee S.T. and Wang C.H., “A Numerical Study of Skid Marks on the Slabs in a Walking-Beam Type Slab Reheating Furnace,” Numerical Heat Transfer Part A: Application, Volume 57, Issue 6, pp. 1 – 17, 2010.
    23. Wild D., Steinboeck A., Kiefer T., and Kugi A., “A mathematical model of a slab reheating furnace with radiative heat transfer and non-participating gaseous media,” International Journal of Heat and Mass Transfer, Volume 53, Issue 25-26, pp.5933-5946, 2010.
    24. Sang H.H., Chang D., and Huh C.,“Efficiency analysis of radiative slab heating in a walking-beam-type reheating furnace,” Energy, Volume 36, Issue 2, pp. 1265–1272, 2011.
    25. Chang D. and Sang H.H., “Radiative slab heating analysis for various fuel gas compositions in an axial-fired reheating furnace,” International Journal of Heat and Mass Transfer, Volume 55, Issue15-16, pp. 4029– 4036, 2012.
    26. Vinod K.S. and Prabal T.,“Comparisons of different heat transfer models of a walking beam type reheat furnace,” International Journal of Heat and Mass Transfer, Volume 547, pp. 20–26, 2013.
    27. Launder, B.E., and Spalding, D.B., Mathematical Models of Turbulence, ed. London: Academic Press, pp. 99-100, 1972.
    28. Modest M.F.,“The weighted-sum-of-gray-gases model for arbitrary solution methods in radiative transfer,” J. Heat Transfer 113, pp. 650-656, 1991.
    29. Smith T.F., Shen Z.F., and Friedman J.N., “Evaluation of coefficients for the weighted sum of gray gases model,” J. Heat Transfer 104, pp. 602-608, 1982.
    30. Coppalle A. and Vervisch P.,“The Total Emissivities of High-Temperature Flames,” Combustion and Flame 49, pp. 101-108, 1983.
    31. Incoropera, F.P., DeWitt, D.P., Editor,“Fundamentals of heat and mass transfer,” 5th wd., John Wiley & Sons, Hoboken, USA, 2002.
    32. The British Iron and Steel Research Association (ed), “Physical Constant of Some Commercial Steels at Elevated Temperatures,” Butterworths Scientific Publications, London, 1953.
    33. CFD-ACE(U), CFD Research Corporation, Albama, USA, 2004
    34. STAR-CD Methodology, Version 3.15, Japan, 2001.
    35. ANSYS-FLUENT, A Release 15.0, Documentation for ANSYS Workbench, ANSYS Ltd., 2013.
    36. Van Doormaal, J.P. and Raithby, F.D., “Enhancements of the SIMPLE Method predicting Incompressible fluid flows,” Numerical Heat Transfer, Volume 7, pp. 147-163, 1984.
    37. Patankar, S.V., Numerical heat transfer and fluid flow: Hemisphere Publishing Company, 1980.

    下載圖示 校內:2019-06-30公開
    校外:2019-06-30公開
    QR CODE