| 研究生: |
馮詩婷 Feng, Shih-Ting |
|---|---|
| 論文名稱: |
應用於合成接續性製程診斷測試步驟的混合式自動機建模策略 A Hybrid Modeling Strategy to Build Automata for Synthesizing Diagnostic Tests in Sequential Operations |
| 指導教授: |
張珏庭
Chang, Chuei-Tin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 166 |
| 中文關鍵詞: | 自動機 、失誤診斷測試 、動態模擬 、接續性製程 |
| 外文關鍵詞: | Automaton, Diagnostic test, Dynamic simulation, Sequential operation |
| 相關次數: | 點閱:88 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
工廠異常狀態管理的重要工作之一是失誤即時辨識。一般而言,系統整體的診斷解析度可以藉由增設感測器來提升,但若不希望增加設備投資的預算,則可藉由執行額外的診斷測試步驟來分辨出失誤根源。由於過去的探討僅限於簡單的物料及能量運送的操作,我們希望能改善既有方法,應用在較為真實且具複雜輸送現象的化工程序上。本研究藉由系統化方法,根據工程知識和ASPEN Plus Dynamics動態模擬數據來建立自動機模型,並據以自動搜尋出最適的診斷測試步驟,最後利用商用軟體ASPEN Plus Dynamics執行動態模擬來驗證所得測試步驟的可行性與正確性。
Although diagnostic tests have been adopted in the past for differentiating the originally inseparable fault origins in simple batch processes, their applicability in realistic systems is still questionable. To address this concern, the dynamic behavior of every processing unit involved in a given sequential operation is modeled in this work by integrating both the generic engineering knowledge and also the ASPEN-generated simulation data into an automaton. The improved test plans can be synthesized according to the system model obtained by assembling all such automata. The validity of this approach has also been verified in dynamic simulation studies in several realistic examples with ASPEN Plus Dynamics. The feasibility of this model building strategy is demonstrated with examples concerning the start-up operations of a flash process and also a distillation column.
Åkesson, K., Fabian, M., Malik, R., 2006. Supremica – An integrated environment for verification, synthesis and simulation of discrete event systems. Proceedings of the 8th International Workshop on Discrete Event Systems, IEEE. 384-385.
Benveniste, A., Fabre, E., Haar, S., Jard, C., 2003. Diagnosis of asynchronous discrete-event systems: a net unfolding approach. IEEE Trans. Autom. Control 48 (5), 714–727.
Bullemer, P.T., Nimmo, I., 1994. Understanding and supporting abnormal situation management in industrial process control environments: a new approach to training, Proc. Of the 1994 IEEE International Conference on Systems, Man, and Cybernetics, Piscataway, pp.391–396.
Caccavale, F., Pierri, F., Iamarino, M., Tufano, V., 2009. An integrated approach to fault diagnosis for a class of chemical batch processes. Journal of Process Control 19 (5), 827–841.
Cassandras, C.G., Lafortune, S., 1999. Introduction to Discrete Event Systems. Kluwer Academic Publisher, Boston.
Chen, J., Jiang, Y.C., 2011. Development of hidden semi-Markov models for diagnosis of multiphase batch operation. Chemical Engineering Science 66 (15), 1087–1099.
Chen, Y.C., Yeh, M.L., Hong, C.L., Chang, C.T., 2010. Petri-net based approach to configure online fault diagnosis systems for batch processes. Ind. Eng. Chem. Res. 49 (9), 4249-4268.
Chen, J.Y., Chang, C.T., 2009. Development of fault diagnosis strategies based on qualitative predictions of symptom evolution behaviors. Journal of Process Control 19 (5), 842–858.
Chen, J.Y., Chang, C.T., 2007. Systematic enumeration of fuzzy diagnosis rules for identifying multiple faults in chemical processes. Ind. Eng. Chem. Res. 46 (11), 3635-3655.
Thürlimann, C., Villez, K., 2017.Input estimation as a qualitative trend analysis problem. Computers & Chemical Engineering.
Dai, Y., Zhao, J., 2011. Fault diagnosis of batch chemical processes using a dynamic time warping (DTW)-based artificial immune system. Ind. Eng. Chem. Res. 50, 4534-4544.
Debouk, R., Lafortune, S., Teneketzis, D., 2000. Coordinated decentralized protocols for failure diagnosis of discrete event systems. Discret. Event Dyn. Syst. Theory Appl. 10 (1–2), 33–86.
Frank P., 1997. Analytical and qualitative model-based fault diagnosis– a survey and some new results. European Journalof Control 2 (1), 6– 28.
Gascard, E., Simeu-Abazi, Z., 2013. Modular modeling for the diagnostic of complex discrete-event systems. IEEE Transactions on Automation Science and Engineering 10(4), 1101-1123.
Gertler, J., 1998. Fault detection and diagnosis in engineering system.Marcel Dekker, New York.
Ghosh, K., Srinivasan, R., 2011. Immune-system-inspired approach to process monitoring and fault diagnosis. Ind. Eng. Chem. Res. 50, 4249-4268.
Gomes Cabral, F., Moreira, M. V., Diene, O., & Basilio, J. C., 2015. A petri net diagnoser for discrete event systems modeled by finite state automata. IEEE Transactions on Automatic Control 60(1), 59-71.
Hashizume, S., Yajima, T., Ito, T., Onogi, K., 2004. Synthesis of operating procedures and procedural controllers for batch processes based on Petri nets. Journal of the Chinese Institute of Chemical Engineers 35, 363-369.
Hsu,J.C., Chang, C.T., 2011. Dynamic Simulation of Operating Procedure in Chemical Plants with ASPEN. Master thesis, National Cheng Kung University.
Kang, A., Chang, C. T., 2014. Automata generated test plans for fault diagnosis in sequential material-and energy-transfer operations. Chemical Engineering Science. 113, 101-115.
Lee, J.M., Yoo, C.K., Lee, I.B., 2004. Fault detection of batch processes using multiway kernel principal component analysis. Computers & Chemical Engineering 28 (9), 1837-1847.
Li, J. H., Chang, C. T., Jiang, D., 2014. Systematic generation of cyclic operating procedures based on timed automata. Chem. Eng. Res. Des. 92, 139 - 155.
Malik, R., Fabian, M., Akesson, K., 2011. Modelling large-scale discrete-event systems using modules, aliases, and extended finite-state automata. IFAC Proceedings Volumes. 18th IFAC World Congress.18, 7000-7005.
Maurya, M., Rengaswamy, R., Venkatasubramanian, V., 2004.
Application of signed digraph-based analysis for fault diagnosis chemical process flowsheets. Engineering Applications of Artificial Intelligence 17 (5), 501–518.
Nimmo, I., 1995. Adequately address abnormal situation operations, Chem. Eng. Prog., 91,36 – 45.
Nomikos, P., MacGregor, J.F., 1994. Monitoring batch processes using multiway principal component analysis. AIChE J. 40 (8), 1361-1375.
Nomikos, P., MacGregor, J.F., 1995. Multivariate SPC charts for monitoring batch processes. Technometrics 37 (1), 41-59.
Pierri, F., Paviglianiti, G., Caccavale, F., Mattei, M., 2008. Observer-based sensor fault detection and isolation for chemical batch reactors. Engineering Applications of Artificial Intelligence 21 (8), 1204–1206.
Qiu, W.B., Kumar, R., 2006. Decentralized failure diagnosis of discrete event system. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 36 (3), 384-395.
Ricker, L., Lafortune, S., Genc, S., 2006. Desuma: A tool integrating GIDDES and UMDES. Software tools, 8th international workshop on discrete-event systems.
Ruiz, D., Canton, J., Nougues, J.M., Espuna, A., Puigjaner, L., 2001a. On-line fault diagnosis system support for reactive scheduling in multipurpose batch chemical plants. Computers & Chemical Engineering 25 (4–6), 829–837.
Ruiz, D., Nougues, J.M., Calderon, Z., Espuna, A., Puigjaner, L., 2001b. Neural network based framework for fault diagnosis in batch chemical plants. Computers & Chemical Engineering 24 (2–7), 777–784.
Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K.,
Teneketzis,D., 1995. Diagnosability of discrete-event systems. IEEE Transactions on Automatic Control 40 (9), 1555-1575.
Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K.,Teneketzis, D.C., 1996. Failure diagnosis using discrete-event models. IEEE Transactions on Control Systems Technology 4 (2),105-124.
Sköldstam, M., Åkesson, K., Fabian, M., 2007. Modeling of discrete event systems using finite automata with variables. 46th IEEE Conference: Decision and Control.
Tan W. L., Nor N. M., Abu Bakar M. Z., Ahmad Z., Sata S. A., 2012. Optimum parameters for fault detection and diagnosis system of batch reaction using multiple neural networks. J. Loss Prev. Proc. Ind. 25, 138-41.
Undey, C., Ertunc, S., Cinar, A., 2003. Online batch fed-batch process performance monitoring, quality prediction, and variable contribution analysis for diagnosis. Ind. Eng. Chem. Res. 42 (20), 4645-4658.
Wang, C.J., Chang, C.T., 2017. Automata Based Emergency Response Procedures–Synthesis and Verification. Computers & Chemical Engineering 97(1-16),220-241.
Yeh, M.L., Chang, C.T., 2011. An automaton-based approach to evaluate and improve online diagnostic schemes for multi-failure scenarios in batch processes. Chem. Eng. Res. Des 89, 2652-2666.
Ye´lamos, I., Bojarski, A., Joglekar, G., Venkatasubramanian,V., Puigjaner, L., 2009.Enhancing abnormal events management by the use of quantitative process hazards analysis results. Ind. Eng. Chem. Res. 48, 3921–3933.
Zad, S.H., Kwong, R.H., Wonham, W.M., 2003. Fault diagnosis in discrete-event systems: framework and model reduction. IEEE Trans. Autom. Control 48 (7), 1199-1204.
Zhang, Z., Wu, C., Zhang, B., Xia, Y., Li, A., 2005. SDG multiple fault diagnosis by real-time inverse inference. Reliability Engineering and System Safety 87 (2), 173–189.
Zhao, C., 2014. Quality-relevant fault diagnosis with concurrent phase partition and analysis of relative changes for multiphase batch processes. AIChE Journal 60(6), 2048-2062.