| 研究生: |
沈昌毅 Shang, Chang-Yi |
|---|---|
| 論文名稱: |
利用結構矩陣和有向圖模型的改良模糊診斷方法 Improved Fuzzy Diagnosis Method with Structure Matrix and SDG Model |
| 指導教授: |
張玨庭
Chang, Chuei-Tin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 模糊推論 、全域 、局部 、失誤傳遞路徑 、症候發生順序 |
| 外文關鍵詞: | IF-THEN, Fuzzy, FPP, SOO |
| 相關次數: | 點閱:48 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據有向圖模式在大型化工程序中進行模糊診斷的現有方法,往往會需要眾多線上測量訊號,不但計算量龐大且鑑別度不高。本研究利用結構矩陣(Structure matrix)先將系統分割成不同區塊後再分別進行模糊推論,不但減少了IF-THEN法則數目,而且可以提升解析能力。我們利用MATLAB模擬測試,對一系列案例深入分析,從模擬結果可以觀察到,若使用上述局部推論方式執行失誤診斷,針對較上游發生的失誤,可以達到較高的診斷效率及鑑別度。
The signed directed graphic (SDG) modal presently applying to fuzzy diagnosis performs in the chemical engineering process with large digital calculation and low differentiating degree. In this study, structure matrix is used to dividing the entire system into small blocks. the problem is solved by the way of fuzzy inference. Local fuzzy inference analysis showed the decreasing tendency of IF-THEN rules and enhancement of analytical ability. For the practical purpose, “MATLAB” is used to simulate the cases. By the way of simulation, the error observation can be accomplished at the upstream procedure by local fuzzy inference. The method for error detection can get higher level of diagnosis efficiency and differentiating degree.
Chang, C. T., Mah, K. N., and Tsai, C. S., “A Simple Design Strategy for Fault Monitoring Systems,” AIChE Journal. 39, 1146-1163, 1993.
Chang, S. Y., Lin, C. R., and Chang, C. T., “A Fuzzy Diagnosis Approach Using Dynamic Fault Tree,” Chemical Engineering Science 57, 2971-2985, 2002.
Chang, S. Y., and Chang, C. T., “A-Fuzzy-Logic Based Fault Diagnosis Straetgy for Control Loops,” Chemical Engineering Science 58, 3305-3411, 2003.
Chen, J. Y., and Chang, C. T. “Fuzzy Diagnosis Method for Control Systems with Coupled Feed Forward and Feedback Loops,” Chemical Engineering Science 61, 3105-3128, 2006.
Chen, Y. J., and Chang, C. T., “Systematic Enumeration of Fuzzy Diagnosis Rules for Identifying Multiple Faults in Chemical Process,” Industrial and Engineering Chemistry Research . 46, 3635-3655, 2007
Choi, H. H., “Output Feedback Stabilization of Uncertain Fuzzy Systems Using Variable Structure System Approach,” Fuzzy Sets And Systems 160, 2812-2823, 2009.
Dash, S., Rengaswamy, R., and Venkatasubramanian, V., “Fuzzy-Logic Based Trend,” Computer and Chemical Engineering 27, 347-362, 2003.
Elsayed, T., “Fuzzy Inference System for The Risk Assessment of Liquefied Natural Gas Carriers During Loading Offloading at Terminals,” Applied Ocean Research 31, 179-185, 2009.
Ferdous, R., Khan, F., Veitch, B., and Amyotte, P. R., “Methodology for Computer Aided Fuzzy Fault Tree Analysis,” Process Safety and Environmental Protection 87, 217-226, 2009.
Horiuchi, J. I., “Fuzzy Modeling and Control of Biological Process,” Journal of Bioscience and Bioengineering 94, 574-578, 2002.
Kilic, E., “Diagnosability of Fuzzy Discrete Event Systems,” Information Sciences 178, 858-870, 2008.
Mathworks, 2002a. Simulink-Dynamic System Simulation for Matlab-Using Simulink, The Mathworks Inc.
Mathworks, 2006a. Fuzzy Logic Toolbox-User Guid 2, The Mathworks Inc.
Mathworks, 2006b. Simulink 5 Using Simulink , The Mathworks Inc.
Maura, M. R., Rengaswamy, R., and Venkatasubramanian, V., “A Signed Directed Graph-Based Systematic Framework for Steady-State Malfunction Diagnosis inside Control Loops,” Chemical Engineering Science 61, 1790-1810, 2006.
Montalva, M., Aracena. J., and Gajardo, A., “On the Complexity of Feedback Set Problems in Signed Digraphs,” Electronic Notes in Discrete Mathematics 30, 249-254, 2008.
Rico, A., “Sugeno Integral in A Finite Boolean Algebra,” Fuzzy Sets and Systems 159, 1709-1718, 2008.
Saridaakis, K. M., Chasalevris, A. C., Papadopoulos, C. A., and Dentsoras, A. J., “Applying Neural Networks, Genetic Algorithms and Fuzzy Logic for The Identification of Cracks in Shafts by Using Coupled Response Measurements,” Computers And Structure 86, 1318-1338, 2007.
Sugeno, M.. Industrial Applications of Fuzzy Control, Elsevier Science Pub. Co, 1985.
Tarifa, E. E., and Scenna, N. J., “Fault Diagnosis for MSF Dynamic States Using a SDG and Fuzzy Logic,” Desalination 166, 93-101. 2004.
Tarifa, E. E., and Scenna, N. J., “Fault Diagnosis for MSF Dynamic States Using a SDG and Fuzzy Logic,” Desalination 152, 207-214. 2002.
Ulerich, N. H., Powers, G. J., “On- Line Hazard Aversion and Fault Diagnosis in Chemical Process: The Digraph + Fault-Tree Method,” IEEE Sensors Journal. 37, 171-177, 1988.
Wang, Z., and Klir, G. J., Fuzzy Measure Theory, Springer, 1993.
Wang, L. X., A Course in Fuzzy Systems and Control, Prentice Hal, 1996.
Yang, H., Ye H., and Wang, G., “Dynamic Reconstruction-Based Fuzzy Neural Network Method for Fault Detection in Chaotic System. ” Tsinghua Science And Technology 13, 65-70, 2008.
Yuang, X. H., Li, H. X., Lee, E. S., “On The Definition of The Intuitionistic Fuzzy Subgroups,” Computers and Mathematics with Applications 59, 3117-3129, 2010.
Zhang, Z. Q., Wu, C. Q., Zhang, B. K., Xia, Tao., and Li, A.F., “SDG Multiple Fault Diagnosis by Real-Time Inverse Inference,” Reliability Engineering and System Safe