簡易檢索 / 詳目顯示

研究生: 梁智翔
Liang, Chih-hsiang
論文名稱: 水熱電化學法製備超高電容器用錳氧化物電極材料之研究
The study of manganese oxide electrode for supercapacitor prepared by hydrothermal electrochemical method
指導教授: 黃啟祥
Hwang, Chii-shyang
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 176
中文關鍵詞: 超高電容器錳氧化物薄膜田口式實驗計畫法
外文關鍵詞: Taguchi experimental design method, manganese oxide film, supercapacitor
相關次數: 點閱:87下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在以水熱電化學法製備超高電容器用之錳氧化物電極材料。以水熱電化學法於醋酸錳溶液中製備的錳氧化物薄膜,其材料特性與擬電容性質受許多製程因子的影響,如醋酸錳溶液濃度(0.01 ~ 0.2 M),水熱溫度(100 ~ 140°C),沉積電壓(0.6 ~ 0.8 V)與沉積時間 (60 ~ 600 sec)。為瞭解諸因子對製備的錳氧化物其材料特性與擬電容性質的影響,本研究以田口式實驗計畫法檢討之。結果顯示水熱溫度與醋酸錳溶液濃度是影響錳氧化物薄膜電極之比電容值最大的兩個因子,其貢獻度分別為84%及8%。本研究進一步檢討水熱溫度(60 ~ 150°C)、醋酸錳溶液濃度(0.2 ~ 0.6 M)兩製程因子對製備的錳氧化物薄膜之材料特性與擬電容行為的影響;另外,醋酸錳溶液之pH值(pH 5.0 ~ 8.0)以及測試用電解液(Na2SO4, K2SO4, MgSO4 及Na3PO4)對超高電容器特性的影響也一併予以檢討。
    100°C的水熱溫度是以水熱電化學法製備錳氧化物的臨界溫度。當水熱溫度低於100°C時,製備的錳氧化物薄膜具含水的非結晶相之特性,其化學組成可記為Mn3O4.nH2O (n ~ 1.2),其亦具有優異的比電容值;當水熱溫度高於100°C時,錳氧化物薄膜則具無水且結晶相之特性,此特性雖使得比電容值變低,但卻改善了錳氧化物薄膜的電容穩定性。
    製備的錳氧化物其錳離子的價數是隨醋酸錳溶液濃度的增加(0.2 ~ 0.6M),從二、三價的混合價數增加成為四價。醋酸錳溶液之pH 值為5.0為及7.3時,製備的錳氧化物其化學組成分別為MnOOH 及 Mn3O4。以60°C的水熱溫度、0.2 M的中性(pH = 7.3)醋酸錳溶液濃度的條件下,所製得之錳氧化物薄膜電極,在25°C 、0.1 M 的Na2SO4電解液中,以20 mV s-1的電位掃描速率測試時,具有最佳之比電容值244 F g-1。實驗結果也證實了錳氧化物薄膜電極在Na2SO4電解液中,具有比K2SO4,MgSO4 及 Na3PO4電解液更優異的擬電容行為。
    高含水量及多孔隙是兩種主要影響奈米級錳氧化物薄膜電極之比電容值的材料特性。利用水熱電化學法製備錳氧化物薄膜時,調整水熱溫度及醋酸錳溶液濃度會改變此兩種材料特性,進而影響超高電容器的電容特性。

    The manganese oxide films used as the electrode materials of supercapacitor were successfully deposited by using the hydrothermal electrochemical method in manganese acetate solutions. Material characteristics and pseudo-capacitance of the manganese oxide films were influenced by many synthesis factors, such as concentrations of manganese acetate solutions (0.01 ~ 0.2 M), synthesis temperatures (100 ~ 140°C), deposition voltages (0.6 ~ 0.8 V), and deposition times (60 ~ 600 sec). To understand the effects of these synthesis factors on the material characteristics and pseudo-capacitance of the manganese oxide films, these factors were investigated systematically by using the Taguchi experimental design method. The results showed that synthesis temperatures and concentrations of manganese acetate solutions were two main factors to influence the specific capacitance of manganese oxide electrodes, and the contribution rates of these two factors to the specific capacitance of manganese oxides were 84% and 8%, respectively. The effects of synthesis temperatures (60 ~ 150°C) and concentrations of manganese acetate solutions (0.2 ~ 0.6 M) on the manganese oxide films’ characteristics and pseudo-capacitive of supercapacitors were further analyzed. In addition, the influences of pH values of manganese acetate solutions (pH 5.0 ~ 8.0) and the testing electrolytes (e.q. Na2SO4, K2SO4, MgSO4 and Na3PO4) to the properties of supercapacitors were also investigated in this study.
    The synthesis temperature of 100°C was the critical temperature. As the synthesis temperature was under 100°C, the deposits were shown hydrous and amorphous structures composed of divalent and trivalent manganese oxides and that could be denoted as Mn3O4.nH2O (n ~ 1.2), and excellent specific capacitance was presented; however, as the synthesis temperature was over 100°C,anhydrous and crystalline structures were obtained to improve the stability of capacitive performance, but presented poor specific capacitance.
    The oxidation valence of manganese oxide which was deposited at 60°C increased from mixing of Mn2+and Mn3+ to Mn4+ as the concentrations of manganese acetate solutions increasing from 0.2 to 0.6 M. The chemical composition of manganese oxides was included MnOOH and Mn3O4 compositions as pH values of manganese acetate solutions were 5.0 and 7.3, respectively. According to the investigation, the manganese oxides deposited in the manganese acetate solution of 0.2 M and pH 7.3, and deposited at 60°C showed the highly specific capacitance of 244 F g-1 in the Na2SO4 electrolyte of 0.1 M at 25°C. In the Na2SO4 electrolyte, the manganese oxides showed the better pseudo-capacitive behaviors than K2SO4, MgSO4 and Na3PO4.
    High water content and nano-scaled porous surface morphologies of manganese oxides were two important material characteristics to influence the specific capacitance of the supercapacitor and these two material characteristics were affected by synthesis temperatures and concentrations of manganese acetate solutions when the manganese oxides were deposited by using the hydrothermal electrochemical method

    總目錄 中文摘要...................................................................................................... I 英文摘要...................................................................................................... III 總目錄.......................................................................................................... VII 表目錄.......................................................................................................... XII 圖目錄.......................................................................................................... XIV 第一章 緒論................................................................................................ 1 1-1前言................................................................................................ 1 1-2研究動機與目的............................................................................ 4 第二章 理論基礎與文獻回顧.................................................................... 7 2-1儲能元件簡介................................................................................ 7 2-2 電容器簡介................................................................................... 8 2-2-1 電容器之電容量................................................................ 12 2-2-2 電容器的能量儲存機構.................................................... 12 2-3超高電容器發展史........................................................................ 14 2-4超高電容器之分類........................................................................ 16 2-5超高電容器之特性........................................................................ 18 2-6超高電容器的應用與發展............................................................ 19 2-7超高電容器之電極材料................................................................ 20 2-8錳氧化物電極製備方法................................................................ 24 2-9 錳氧化物電極的儲能機構........................................................... 29 2-10 錳氧化物電極之電容特性評估方式......................................... 30 2-10-1 比電容值.......................................................................... 31 2-10-2 長時效充放電的穩定性.................................................. 33 2-11 田口式品質工程......................................................................... 34 第三章 實驗方法與步驟............................................................................ 55 3-1電極材料之製備............................................................................. 55 3-1-1 基材前處理........................................................................... 55 3-1-2 水熱電化學法沉積錳氧化物............................................... 55 3-2藥品與製備錳氧化物薄膜之儀器設備......................................... 56 3-3田口式實驗計畫法......................................................................... 57 3-4錳氧化物電極材料性質分析......................................................... 57 3-4-1 表面微觀組織分析............................................................... 57 3-4-2 結晶相分析........................................................................... 58 3-4-3 化合狀態分析....................................................................... 58 3-4-4 表面形貌分析....................................................................... 60 3-4-5 熱性質及含水量分析........................................................... 61 3-4-6 硫酸鈉電解液中錳離子濃度之量測................................... 61 3-5錳氧化物電極之電容性質分析..................................................... 62 3-5-1 電解液的選擇....................................................................... 62 3-5-2 擬電容特性分析................................................................... 62 第四章 結果與討論.................................................................................... 71 4-1利用田口式實驗計畫法找出以水熱電化學法製備超高電容器之錳氧化物電極之最適條件與關鍵實驗因子............................ 71 4-1-1田口式實驗規劃.................................................................... 71 4-1-2田口式L18實驗結果與S/N比........................................... 72 4-1-3變異數分析............................................................................ 74 4-1-4錳氧化物電極之表面形態.................................................... 75 4-1-5錳氧化物之結晶相................................................................ 76 4-1-6錳氧化物電極之擬電容特性及穩定性................................ 77 4-1-7結語........................................................................................ 78 4-2水熱溫度對錳氧化物特性的影響................................................. 91 4-2-1錳氧化物之表面形態............................................................ 91 4-2-2錳氧化物之結晶相................................................................ 93 4-2-3錳氧化物之化合狀態與化學組成........................................ 93 4-2-4錳氧化物的熱重與熱差分析................................................ 95 4-2-5水熱溫度與錳氧化物電極之比電容值與含水量之關係.... 96 4-2-6錳氧化物電極之電容穩定性測試........................................ 97 4-2-7結語........................................................................................ 100 4-3醋酸錳溶液性質對錳氧化物特性的影響..................................... 114 4-3-1醋酸錳溶液濃度對錳氧化物表面形態之影響.................... 114 4-3-2醋酸錳溶液濃度對錳氧化物之化學組成與含水量之影響 115 4-3-3醋酸錳溶液濃度對比電容值之影響.................................... 116 4-3-4醋酸錳溶液pH值對錳氧化物表面形態之影響................. 117 4-3-5醋酸錳溶液pH值對錳氧化物之化學組成的影響............. 119 4-3-6醋酸錳溶液pH值對比電容值的影響................................. 119 4-3-7結語........................................................................................ 121 4-4電解液陽離子半徑大小與價數對錳氧化物電化學性質的影響 139 4-4-1電解液之特性........................................................................ 139 4-4-2錳氧化物電極於不同電解液中之比電容值........................ 140 4-4-3錳氧化物電極於電解液中長時效充放電之穩定性............ 142 4-4-4結語........................................................................................ 143 第五章 結論................................................................................................ 151 第六章 未來研究方向................................................................................ 156 參考文獻...................................................................................................... 157 表目錄 Table 2-1 The comparison table of different ceramic powder producing process………………………………………………………….. 38 Table 2-2 Relative dielectric constant of various materials………………. 39 Table 2-3 Auxiliary table for L18…………………………………………. 40 Table 3-1 Radii of various cations in the aqueous solutions……………… 64 Table 3-2 Conductivity and mobility of various cations in infinite diluted aqueous solutions………………………………………………. 65 Table 4-1 Factors and levels for L18 orthogonal array…………………… 79 Table 4-2 S/N ratio of L18 orthogonal array and experimental data of specific capacitance preparing by various factors……………… 80 Table 4-3 ANOVA for the specific capacitance from L18 orthogonal array…………………………………………………………….. 81 Table 4-4 Effect of synthesis temperature on corresponding pressures and deposit weights of manganese oxides deposited by using hydrothermal electrochemical method………………………….. 101 Table 4-5 XPS peak results for manganese oxides synthesized at various temperatures for Mn 3s and O 1s spectra………………………. 102 Table 4-6 XPS peak analytical results of Mn 3s spectra and hydration of the manganese oxides deposited in various concentration of manganese acetate solution…………………………………….. 123 Table 5-1 The specific capacitance of Mn oxide electrodes deposited by various hydrothermal electrochemical method process conditions……………………………………………………….. 154 Table 5-2 The decay ray of specific capacitance of Mn oxide electrodes deposited by various synthesis temperatures and testing electrolytes after cyclic testing………………………………….. 155 圖目錄 Fig. 1-1 Sketch of dielectric capacitor……………………………………. 6 Fig. 2-1 The equivalent circuits of capacitors in (a) series, and (b) parallel connections………………………………………………………. 41 Fig. 2-2 Electrochemical double layers of (a) Helmholtz model, and (b)Gouy-Chapman model………………………………………... 42 Fig. 2-3 Electrochemical double layers of (a) Stern model, and (b) potential profile corresponding to the Stern model……………… 43 Fig. 2-4 A schematic diagram of double-layer capacitor…………………. 44 Fig. 2-5 A schematic diagram of electron-proton mechanism for reduction of the manganese oxide in concentrated alkaline electrolytes…... 45 Fig. 2-6 The radar diagram of performance evaluation for a secondary battery and a supercapacitor……………………………………... 46 Fig. 2-7 The specific power and the specific energy of various energy storage devices………………………..…………………………. 47 Fig. 2-8 Structures of conductive polymer, (a) Poly(3-[4-fluorophenyl]thiophene) (PFPT), and (b) Poly(dithieno[3, 4-b:3’, 4’-d]thiophene) (PDTT) ……….……… 48 Fig. 2-9 The potential of the Mn oxide film as a function of oxidation time. Four oxidations have been done, each stopped during a different stage of oxidation……………………………………... 49 Fig. 2-10 Current vs. potential plots for samples oxidized to various end potentials and then cycled 100 times. A scan rate of 50 mV s-1 was used in 1 M Na2SO4 electrolyte……………………………. 50 Fig. 2-11 Cyclic voltammorgrams at 5 mVs-1 of an amorphous MnO2 nH2O electrode between -0.2 and +1.0 V versus SCE in 2 M ACl (A = Li, Na, K) electrolyte with Pt-gauze counter electrode……………………………………………………….. 51 Fig. 2-12 (a) Cyclic voltammograms of the MnO2 electrode taken at 10 mV s-1 scan rate in: (a) 100; (b) 10.0; (a) 1.0; and (d) 0.1 mM KCl electrode, and (b) the linear regression fit of the capacitances against pK of KCl electrolyte solution…………… 52 Fig. 2-13 (a) Cyclic potential sweep, and (b) resulting cyclic voltammogram…………………………………………………. 53 Fig. 2-14 The essential illustrating distributed capacity and/or faradaic current effects in potential regions where capacity is constant… 54 Fig. 3-1 Schematic figure of hydrothermal electrochemical cell equipped with Ag/AgCl reference electrode……………………………….. 66 Fig. 3-2 Experimental flow chart of depositing manganese oxide films using hydrothermal electrochemical method……………………. 67 Fig. 3-3 Photoelectrons occur principle figure……………………………. 68 Fig. 3-4 Schematic diagram of energy gap of the Raman scattering……... 69 Fig. 3-5 Schematic diagram of Potentiostat / Galvanostat analyzer……… 70 Fig. 4-1 The fish bone diagram of L18 experiments……………………… 82 Fig. 4-2 The plot of specific capacitance vs. each L18 experiments……... 83 Fig.4-3 The response diagram of main factors: concentration of electrolyte (B), synthesis temperature (C), deposition time (D) and deposition voltage (E) ……………………………………... 84 Fig. 4-4 The contribution of various factors affected on the specific capacitance………………………………………………………. 85 Fig. 4-5 FE-SEM images of manganese oxide films prepared by various conditions: (a) order 7, (b) order 12, and (c) optimum specimens 86 Fig. 4-6 Surface roughness and topography of the manganese oxide films prepared by (a) order 7, (b) order 12, and (c) optimum deposition conditions, respectively………………………………………….. 87 Fig. 4-7 XRD patterns of manganese oxide film hydrothermally synthesized under various deposition conditions: (a) order 7, (b) optimum, and (c) order 12 specimens…………………………….. 88 Fig. 4-8 Cyclic voltammograms were obtained from order 7, order 12, and optimum specimens in the potential range of 0 to 1 V (vs. SCE) with scan rate 20 mV s-1 in 0.1 M Na2SO4 solution……….. 89 Fig. 4-9 Cyclic-life performance of order 7, 12, and optimum specimens prepared by hydrothermal electrochemical method………..……. 90 Fig. 4-10 FE-SEM images of manganese oxide films deposited at various temperatures: (a) 60, (b) 80, (c) 100, (d) 130, and (e) 150°C with 0.8V and in manganese acetate of 0.2 M………………….. 103 Fig. 4-11 X-ray diffraction patterns of manganese oxide films deposited at 60, (b) 100, and (c) 150 °C with 0.8V and in manganese acetate of 0.2 M…………………………………...……………. 104 Fig. 4-12 XPS spectra of the Mn 3s region for manganese oxides deposited at 60 ~ 150°C with 0.8V and in manganese acetate of 0.2 M……………………………………………………………. 105 Fig. 4-13 XPS spectra of the O 1s region for manganese oxide films deposited at 60 ~ 150°C with 0.8V and in manganese acetate of 0.2 M……………………………………………………………. 106 Fig. 4-14 Raman spectra of manganese oxides deposited at 60 ~ 150°C with 0.8V and in manganese acetate of 0.2 M………………..… 107 Fig. 4-15 TG/DTA curves of manganese oxide films deposited at 60°C with 0.8V and in manganese acetate of 0.2 M were measured at a heating rate of 10 °C min-1 in an air atmosphere……………... 108 Fig. 4-16 The relationship of the specific capacitance of the manganese oxide film with water contents deposited at different temperatures with 0.8V and in manganese acetate of 0.2 M…… 109 Fig. 4-17 (a) The specific capacitance of manganese oxide films deposited at different temperatures with 0.8V and in manganese acetate of 0.2 M with respect to the number cycles, and (b) the relationship of the decay rate and Mn ions in the Na2SO4 for the manganese oxide film deposited at various tempersatures with respect to the number cycles after 800 cycles…………………... 110 Fig. 4-18 Cyclic voltammograms of manganese oxide film deposited at 150°C with 0.8V and in manganese acetate of 0.2 M with various testing cycles…………………………………...………. 111 Fig. 4-19 FE-SEM images of manganese oxide films deposited at (a) 60, (b) 80, (c) 100, (d) 130, and (e) 150°C with 0.8V and in manganese acetate of 0.2 M after 800 cyclic voltammetry charge-discharge cycles measured in 0.1 M of Na2SO4 at 25°C 112 Fig. 4-20 X-ray diffraction patterns of manganese oxide films deposited at (a) 60°C, (b) 100°C, and (c) 150°C, and measured in 0.1 M of Na2SO4 at 25°C after 800 cyclic voltammetry charge-discharge cycles………………………………………… 113 Fig.4-21 FE-SEM photographs of manganese oxide films deposited in (a) 0.2, (b) 0.4, and (c) 0.6M of manganese acetate solution. (Deposited at 60°C, 0.8V, and in pH 7.3 of manganese acetate solution) ………………………………………….…………… 124 Fig. 4-22 XPS spectra of the Mn 3s orbit for the manganese oxide films deposited in varied concentration of manganese acetate solution. (Deposited at 60°C, 0.8V, and in pH 7.3 of manganese acetate solution) …………………………………... 125 Fig. 4-23 XPS spectra of O 1s orbit for the manganese oxide films deposited in varied concentration of manganese acetate solution. (Deposited at 60°C, 0.8V, and in pH 7.3 of manganese acetate solution) …………………………………... 126 Fig. 4-24 Cyclic voltammograms of Mn oxide films deposited in varied concentration of manganese acetate solution. (Deposited at 60°C, 0.8V, and in pH 7.3 of manganese acetate solution)……. 127 Fig. 4-25 Relative specific capacitance of manganese oxide films deposited in varied concentration of manganese acetate solution. (Deposited at 60°C, 0.8V, and in pH 7.3 of manganese acetate solution, and measured in 0.1M Na2SO4 at 25°C) ……………... 128 Fig. 4-26 Potential-pH equilibrium diagram for the manganese-water system at 25°C…………………………….……………………. 129 Fig. 4-27 Surface morphology of the polished Ti substrate (a) 5000X and (b) 10000X……………………………………………………… 130 Fig. 4-28 Surface morphologies of manganese oxides deposited with various pH of manganese acetate solution: (a) pH 5.0, (b) pH 7.3, and (c) pH 8.0. (Deposited at 60°C, 0.8 V, and in 0.2 M of manganese acetate solution) …………………………………... 131 Fig. 4-29 Surface morphologies of manganese oxides deposited with various pH of manganese acetate solution: (d) pH 5.0, (e) pH 7.3, and (f) pH 8.0. (Deposited at 80°C, 0.8 V, and in 0.2 M of manganese acetate solution) …………………………………... 132 Fig. 4-30 Surface morphologies of manganese oxides deposited with various pH of manganese acetate solution: (g) pH 5.0, (h) pH 7.3, and (i) pH 8.0. (Deposited at 100°C, 0.8 V, and in 0.2 M of manganese acetate solution) ……………………………….. 133 Fig. 4-31 Raman spectra of manganese oxide films deposited at various pH of manganese acetate solution. (Deposited at 60°C, 0.8 V, and in 0.2 M of manganese acetate solution) …………………... 134 Fig. 4-32 Cyclic voltammogram of the Ti substrate measured in 0.1 M Na2SO4 at 25°C…………………………………..……………. 135 Fig. 4-33 Cyclic voltammograms of Mn oxide films deposited at different pH of manganese acetate solution. (Deposited at 60°C, 0.8 V, and in 0.2 M of manganese acetate solution, and measured in 0.1M Na2SO4 at 25°C) ………………………………………... 136 Fig. 4-34 Relative specific capacitance of manganese oxide films deposited with different pH of manganese acetate solution. (Deposited at 60°C, 0.8 V, and in 0.2 M of manganese acetate solution, and measured in 0.1M Na2SO4 at 25°C) ……………... 137 Fig. 4-35 Relative specific capacitance of manganese oxide films deposited with different pH of manganese acetate solution and different temperatures. (Deposited at 0.8 V, and in 0.2 M of manganese acetate solution, and measured in 0.1M Na2SO4 at 25°C) ……………………………………………..……………. 138 Fig. 4-36 The relations between hydrous and ionic radii…………………. 145 Fig. 4-37 The deviation of specific capacitance of manganese oxide electrodes with various kinds of electrolytes measured in 0.1 M at 25°C. (Deposited at 60°C, 0.8V, and in pH 7.3 of manganese acetate solution) …………………………………. 146 Fig. 4-38 Cyclic voltammograms of the manganese oxide electrode measured in various electrolytes in 0.1 M at 25°C. (Deposited at 60°C, 0.8V, and in pH 7.3 of manganese acetate solution)…... 147 Fig. 4-39 The specific capacitance of manganese oxide films with respect to the number cycles measured in 0.1 M of various electrolytes. (Deposited at 60°C, 0.8V, and in pH 7.3 of manganese acetate solution)……………………………………………………..…. 148 Fig. 4-40 Surface morphologies of manganese oxide electrodes deposited at 60°C, 0.8V, and in pH 7.3 of manganese acetate solution after 1000 cyclic voltammetry charge-discharge cycles measured in 0.1 M of various electrolytes. ((a) Na2SO4, (b) K2SO4, (c) MgSO, and (d) Na3PO4) …………………………... 149 Fig. 4-41 X-ray diffraction patterns of manganese oxide films deposited at 60°C, 0.8V, and in pH 7.3 of manganese acetate solution after 1000 cyclic voltammetry charge-discharge cycles measured in 0.1 M of (a) Na2SO4, (b) K2SO4, (c) MgSO4, and (d) Na3PO4 electrolytes……………………………………...………………. 150

    1. R. Kötz and M. Carlen, "Principles and applications of electrochemical capacitors", Electrochim. Acta, 45 (2000) 2483.
    2. A. Burke, "Ultracapacitors: why, how, and where is the technology", J. Power Sources, 91 (2000) 37.
    3. S. Trasatti and P. Kurzweil, "Electrochemical supercapacitors as versatile energy stores", Platinum Met. Rev., 38 (1994) 46.
    4. 薛立人, "超高電容器的應用深遠弘廣",工業材料,128 (1997) 133。
    5. B. E. Conway, "Electrochemical capacitors electrochemical capacitors: scientific fundamentals and technological applications", Kluwer Academic/Plenum, New York (1999).
    6.曾文男、蔡麗端, "導電高分子於高儲能電容器之應用",工業材料,176 (2001) 145.
    7. S. Yoon, J. Lee, T. Hyeon, and S. M. Oh, "Electric double-layer capacitor performance of a new mesoporous carbon", J. Electrochem. Soc., 147 (2000) 2507.
    8. M. G. Sullivan, R. Kötz, and O. Haas, "Thick active layers of electrochemically modified glassy carbon electrochemical impedance studies", J. Electrochem. Soc., 147 (2000) 308.
    9. J. P. Zheng, P. J. Cygan, and T. R. Jow, "Hydrous ruthenium oxide as an electrode material for electrochemical capacitors", J. Electrochem. Soc., 142 (1995) 2699.
    10. B. Messaoudi, S. Joiret, M. Keddam, and H. Takenouti, "Anodic behaviour of manganese in alkaline medium", Electrochimi. Acta, 46 (2001) 2487.
    11. C. C. Hu and T. W. Tsou, "Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition", Electrochim. Acta, 47 (2002) 3523.
    12. L. Mao, T. Sotomura, K. Nakatsu, N. Koshiba, D. Zhang, and T. Ohsaka, "Electrochemical characterization of catalytic activities of manganese oxides to oxygen reduction in alkaline aqueous solution", J. Electrochem. Soc., 149 (2002) A504.
    13. Y. U. Jeong and A. Manthiram, "Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes", J. Electrochem. Soc., 149 (2002) A1419.
    14. C. Lin, J. A. Ritter, and B. N. Popov, "Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors", J. Electrochem. Soc., 145 (1998) 4097.
    15. Il-H. Kim, J. H. Kim, B. W. Cho, Y. H. Lee, and K. B. Kim, "Synthesis and electrochemical characterization of vanadium oxide on carbon nanotube film substrate for pseudocapacitor applications", J. Electrochem. Soc., 153 (2006) A989.
    16. N. L. Wu, S. Y. Wang, C. Y. Han, D. S. Wu, and L. R. Shiue, " Electrochemical capacitor of magnetite in aqueous electrolytes", J. Power Sources, 113 (2003) 173.
    17. K. R. Prasad and N. Miura, "Electrochemical synthesis and characterization of nanostructured tin oxide for electrochemical redox supercapacitors", Electrochem. Commun., 6 (2004) 849.
    18. C. C. Hu and T. W. Tsou, "Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition", Electrochem. Commum., 4 (2002) 105.
    19. S. Kuwabata, A. Kishimoto, T.Tanaka, and H. Yoneyama, "Electrochemical synthesis of composite films of manganese-dioxide and polypyrrole and their properties as an active material in lithium secondary batteries", J. Electrochem. Soc., 141 (1994) 10.
    20. J. K. Chang, M. T. Lee, and W. T. Tsai, "In situ Mn K-edge X-ray absorption spectroscopic studies of anodically deposited manganese oxide with relevance to supercapacitor applications", J. Power Sources 166 (2007) 590.
    21. C. C. Hu and C. C. Wang, "Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition", J. Electrochem. Soc., 150 (2003) A1079.
    22. S. C. Pang, M. A. Anderson, and T. W. Chapman, "Novel electrode materials for tin-film ultracapacitors:comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide", J. Electrochem. Soc., 147 (2000) 444.
    23. H. Y. Lee, J. B. Goodenough, V. Manivannan, "Electrochemical capacitors with KCl electrolyte", Comptes Rendus Acad. Sci. Paris, t. 2, Serie II c, (1999) 5650.
    24. M. Yoshimura, "Soft solution processing: concept and realization of direct fabrication of shaped ceramics (nano-crystals, whiskers, films, and/or patterns) in solutions without post-firing", J. Mater. Sci. 41 (2006) 1299.
    25. K. Kajiyoshi, K. Yanagisawa, M. Yoshimura, "Hydrothermal and electrochemical growth of complex oxide thin films for electronic devices" J. Eur. Ceram. Soc., 26 (2006) 605.
    26. K. Kajiyoshi, K. Yanagisawa, Q. Feng, and M. Yoshimura, "Preparation of complex oxide thin films under hydrothermal and hydrothermal-electrochemical conditions", J. Mater. Sci, 41 (2006) 1535.
    27. L. I. Hill, R. Portal, A. Verbaere, and D. Guyomard, "One-step electrochemical synthesis of α-MnO2 and αγ- MnO2 compounds for lithium batteries", Electrochem. Solid State Lett., 4 (2001) A180.
    28. L. I. Hill and A. Verbaere, "On the structural defects in synthetic -MnO2s", J. Solid State Chem., 177 (2004) 4706.
    29. L. I. Hill, A. Verbaere, and D. Guyomard, "MnO2 (-, -, -) compounds prepared by hydrothermal-electrochemical synthesis: characterization, morphology, and lithium insertion behavior", J. Power Sources, 119–121 (2003) 226.
    30. L. I. Hill, A. Verbaere, and D. Guyomard, "Nanofibrous -, -, - and -manganese dioxides prepared by the hydrothermal-electrochemical technique. I. synthesis and characterization", J. Electrochem. Soc., 150 (2003) D135.
    31. M. Ghaemi and L. Binder, "Effect of direct and pulse current on electrodeposition of manganese dioxide", J. Power Sources, 111 (2002) 248.
    32. N. Nagarajan, H. Humadi, and I. Zhitomirsky, "Cathodic electrodeposition of MnOx films for electrochemical supercapacitors", Electrochim. Acta, 51 (2006) 3039.
    33. T. Brousse and D. Bélanger, "A Hybrid Fe3O4-MnO2 Capacitor in Mild Aqueous Electrolyte", Electrochem. Solid State Lett., 6 (2003) A244.
    34. M. T. Lee , J. K. Chang, and W. T. Tsai, "Effects of Iron Addition on Material Characteristics and Pseudo-Capacitive Behavior of Mn-Oxide Electrodes", J. Electrochem. Soc., 154 (2007) A875.
    35. 羅錦興,"品質設計工程指引",中國生產力中心 (2001)。
    36. 黃瑞雄,顏溪成, "漫談電化學",科學發展359 (2002) 22。
    37. 蔡鑑毅,梁文恒,蔡麗端, "晶片型電容器",工業材料,176 (2001) 149。
    38. 張致吉, "台灣被動電子零組件產業現況與兩岸產業貿易之關係",工業材料,142 (1998) 67。
    39. E. Brzozowski and M.S. Castro, "Synthesis of barium titanate improved by modifications in the kinetics of the solid state reaction", J. Eur. Ceram. Soc. 20 (2000) 2347.
    40. Z. Lei, J. Li, Y. Zhang, and S. Lu, "Fabrication and characterization of highly-ordered periodic macroporous barium titanate by the sol-gel method", J. Mater. Chem., 10 (2000) 2629.
    41. Z. Wu, N. Kumagai, and M. Yoshimura, "Hydrothermal formation and growth of single- and double-layer BaTiO3 and SrTiO3 films on the flexible polymer film substrates from Sol-Gel amorphous titanium oxide films", Chem. Mater. 12 (2000) 3356.
    42. J. H. Lee, C. W. Won, and T. S. Kim, "Characteristics of BaTiO3 powders synthesized by hydrothermal process", J. Mater. Sci. 35 (2000) 4271.
    43. 杜佾璋,蔡麗端,"鋁電解電容器之演進與技術發展",工業材料242 (2007) 124。
    44. 鄭丞良,蔡麗端,"晶片型導電高分子固態電容器的發展現況",工業材料254 (2008) 225。
    45. 徐文東, 華賁,陳進富,"雙電層電容器的電容特性分析",電工電能新技術,25 (2006) 59。
    46. E. Glieadi, E. Kirowa-Eisner, and J. Penciner, " Interfacial electrochemistry, an experimental approach", Addison-Wesley Publish Company, INC., 1975.
    47. H. E. Backer, US patent 2800616, "Low voltage electrolytic capacitor", granted (1957).
    48. B. E. Conway, "Transition from supercapacitor to battery behavior in electrochemical energy storage", J. Electrochem. Soc., 138 (1991) 1539.
    49. J. Schindall, "The Charge of the Ultra - Capacitors", IEEE Spectrum (2007).
    50. 陳元杰,廖秋峰,"超高容量電容及電池混合電源模組之應用",工業材料,178 (2001) 100
    51. S. Trasatti, G. Buzzanca, "Ruthenium Dioxide: a New Interesting Electrode Material, Solid State Structure and Electrochemical Behavior", J. Electroanal. Chem. 29 (1971) A1.
    52. S. Sarangapani, B. V. Tilak, and C. P. Chen, "Materials for electrochemical capacitors", J. Electrochem. Soc., 143 (1996) 3791.
    53. J. P. Zheng, J. Huang, and T. R. Jow, "The limitation of energy density for electrochemical capacitors", J. Electrochem. Soc., 144 (1997) 2026.
    54. 黃震宇,蔡麗端,"高能量儲能電容器之近期發展",工業材料 ,242 (2007) 112。
    55. I. Plitz, A. Dupasquier, F. Badway, J. Gural, N. Pereira, A. Gmitter, and G. G. Amatucci, "The design of alternative nonaqueous high power chemistries", Appl. Phys. A-Mater. Sci. Process., 82 (2006) 615.
    56. D. O’neill, R. M. Bowman, and J. M. Gregg, "Dielectric enhancement and Maxwell-Wagner effects in ferroelectric superlattice structures", Appl. Phys. Lett., 77 (2000) 1520.
    57. T. Momma, S. Komaba, and T. Osaka, "Simulation of power capacitor properties for electric vehicle power supply", Denki Kagaku, 65 (1997) 115.
    58. L. P. Jarvis, T. B. Atwater, and P. J. Cygan, "Fuel cell/electrochemical capacitor hybrid for intermittent high power applications", J. Power Sources, 79 (1999) 60.
    59. W. G. Pell, B. E. Conway, W. A. Adams, and J. de Oliveira, " Electrochemical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid EV applications", J. Power Sources, 80 (1999) 134.
    60. E. Faggioli, P. Rena, V. Danel, X. Andrieu, Rmallant, and H. Kahen, " Supercapacitors for the energy management of electric vehicles", J. Power Sources, 84 (1999) 261.
    61. M. Mastragostino, C. Arbizzani, A. Paraventi, and A. Zanelli, " Polymer selection and cell design for electric-vehicle supercapacitors", J. Electrochem. Soc., 147 (2000) 407.
    62. 黃孟娟,張榮錡,"釕-氧化物超高電容器材料特性簡介",工業材料,182 (2002) 122。
    63. 禹相昱,獨古薰,中也廣幸,金村聖志,"規則配列多孔質カーボンの作製と電気二重層キャパシタへの応用",第47回電池討論會論文集(2006) 262。第47回電池討論會論文集(2006) 262。
    64. A. Rudge, J. Davey, J. Raistrick, S. Gottesfield, and J. P. Ferraris, "Conducting polymers as active materials in electrochemical capaci- tors", J. Power Sources, 47 (1994) 89.
    65. Y. Takasu and Y. Murakami, "Design of oxide electrodes with large surface area", Electrochim. Acta, 45 (2000) 4135.
    66. C. Arbizzani, M. Mastragostino, and L. Meneghello, "Polymer-based redox supercapacitors: A comparative study", Electrochim. Acta, 41 (1996) 21.
    67. 曾文男,"導電高分子於高儲能電容器上之應用",工業材料,176 (2001) 145.
    68. S.R.S. Prabaharan, R. Vimla, and Z. Zainal, "Nanostructured mesoporous carbon as electrodes for supercapacitors", J. Power Sources 161 (2006) 730.
    69. W. Sugimoto, H. Iwata, Y. Yasunaga, Y. Murakami, and Y. Takasu, "Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage", Angew. Chem. -Int. Edit., 42 (2003) 4092.
    70. T. Shinomiya, V. Gupta, and N. Miura, "Effects of electrochemical-deposition method and microstructure on thecapacitive characteristics of nano-sized manganese oxide", Electrochim. Acta, 51 (2006) 4412.
    71. J. N. Broughton and M. J. Brett, "Variations in MnO2 electrodeposition for electrochemical capacitors", Electrochim. Acta, 50 (2005) 4814.
    72. B. Djurfors, J. N. Broughton, M. J. Brett, and D. G. Ivey, " Electrochemical oxidation of Mn/MnO films: Formation of an electrochemical capacitor", Acta Mater., 53 (2005) 957.
    73. H. Y. Lee and J. B. Goodenough, " Ideal supercapacitor behavior of amorphous V2O5 H2O in Potassium Chloride (KCl) aqueous solution", J. Solid State Chem., 148 (1999) 81.
    74. K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties,Wiley, New York, 1998.
    75. C. C. Hu, Y. H. Huang, and K. H. Chang, "Annealing effects on the physicochemical characteristics of hydrous ruthenium and ruthenium-iridium oxides for electrochemical supercapacitors", J. Power Sources 108 (2002) 117.
    76. J. P. Zheng and T. R. Jow, "A new charge storage mechanism for electrochemical capacitors", J. Electrochem. Soc., 142 (1995) L6.
    77. T. R. Jow and J. P. Zheng, "Electrochemical capacitors using hydrous ruthenium oxide and hydrogen inserted ruthenium oxide", J. Electrochem. Soc., 145 (1998) 49.
    78. S. N. Razumov, S. V. Litvenenko, A. D. Klementov, and A. I. Belaykov, European Patent Application, EP1156500 A1.
    79. G. G. Amatucci, F. Badway, A. Du Pasquier, and T. Zheng, "An Asymmetric Hybrid Nonaqueous Energy Storage Cell", J. Electrochem. Soc., 148 (2001) A930.
    80. G. X. Wang, B. L. Zhang, Z. L. Yu, and M. Z. Qu, "Manganese Oxide/MWNTs Composite Electrodes for Supercapacitors", Solid State Ionics 176 (2005) 1169.
    81. M. Toupin, T. Brousse and D. Belanger, "Influence of microstructure on the charge storage properties of chemically synthesized manganese dioxide", Chem. Mat., 14 (2002) 3946.
    82. T. Brousse, M. Toupin, R. Dugas, L. Athouël, O. Crosnier, and D. Bélanger, "Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors", 153 (2006) A2171.
    83 E. R. Pinero, V. Khomenko, E. Frackowiak, F. Beguin, "Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors", J. Electrochem. Soc., 152 (2005) 229.
    84. H. Y. Lee, S. W. Kim, "Expansion of active site area and improvement of kinetic reversibility in electrochemical pseudocapacitor electrode", Electrochemical and Solid-State Letters, 4 (2001) 19.
    85. R. N. Reddy, R. G. Reddy, "Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material", J. Power Sources, 132 (2004) 315.
    86. S. C. Pang, M. A. Anderson, and T. W. Chapman, "Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide", J. Electrochem. Soc.,147 (2000) 444.
    87. J. N. Broughton and M. J. Brett, "Investigation of Thin Sputtered Mn Films for Electrochemical Capacitors", Electrochim. Acta 49 (2004) 4439.
    88. J. N. Broughton and M. J. Brett, "Electrochemical Capacitance in Manganese Thin Films with Chevron Microstructure", Electrochem. Solid-State Lett. 5 (2002) A279.
    89. B. Durfors, J. N. Broughton, M. J. Brett, and D. G. Ivey, "Microstructural Characterization of Porous Manganese Thin Films for Electrochemical Supercapacitor Applications", J. Mater. Sci. 38 (2003) 4817.
    90. B. Djurfors, J. N. Broughton, M. J. Brett, and D. G. Ivey, "Electrochemical oxidation of Mn/MnO films: Mechanism of porous film growth", J. Electrochem. Soc., 153 (2006) A64.
    91. J. K. Chang and W. T. Tsai, "Effects of temperature and concentration on the structure and specific capacitance of manganese oxide deposited in manganese acetate solution", J. Appl. Electrochem., 34 (2004) 953.
    92. J. K. Chang, Y. L. Chen, and W. T. Tsai, "Effect of heat treatment on material characteristics and pseudo-capacitive properties of manganese oxide prepared by anodic deposition", J. Power Sources, 135 (2004) 344.
    93. K. R. Prasad and N. Miura, "Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors", Electrochem. Commun., 6 (2004) 1004.
    94. K. R. Prasad, N. Miura, "Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors", J. Power Sources 135 (2004) 354.
    95. H. Y. Lee, V. Manivannan, and J. B. Goodenough, "Electrochemical Capacitors with KCl Electrolyte", Comptes Rendus Chimie, 2 (1999) 565.
    96. G. Lodi, E. Sivieri, A. DeBattisti, and S. Trasatti, "Ruthenium dioxide-based film electrodes III. Effect of chemical composition and surface morphology on oxygen evolution in acid solutions", J. Appl. Electrochem., 8 (1978) 135.
    97. W. J. Dawson, "Hydrothermal synthesis of advanced ceramic powders", Am. Ceram. Soc. Bull., 67 (1988) 1673.
    98. S. Wada, T. Suzuki and T. Noma, "Preparation of barium titanate fine particles by hydrothermal method and their characterization", J. Ceram. Soc. Jpn., 103 (1995) 1220.
    99. K. S. Han, S. W. Song, T. Watanabe, and M. Yoshimura, "Simultaneous and Direct Fabrication of Lithium Cobalt Oxide Film and Powder Using Soft Solution Processing at 100°C", Electrochem. Solid-State Letts., 2 (1999) 63.
    100. S. Wen, J. W. Lee, I. H. Yeo, J. Park, and S. I. Mho, "The role of cations of the electrolyte for the pseudocapacitive behavior of metal oxide electrodes, MnO2 and RuO2", Electrochim. Acta, 50 (2004) 849.
    101. M. Toupin, T. Brousse, and D. Belanger, "Charge storge mechanism of MnO2 electrode used in aqueous electrochemical capacitor", Chem. Mat., 16 (2004) 3184.
    102. A. J. Bard and L. R. Faulkner, "Electrochemical methods-fundamentals and applications", John Wiley & Sons, New York (1980).
    103. E. G. Gagnon, "The triangular voltage sweep method for determining double-layer capacity of porous electrodes-iv. porous carbon in potassium hydroxide", J. Electrochem. Soc., 122 (1975) 521.
    104. T. Brousse and D. Bélanger, "A Hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte", J. Electrochem. Soc., 151 (2004) A614.
    105. A. Era, Z. Takehara, and S. Yoshizawa, "Discharge mechanism of manganese dioxide electrode", Electrochim. Acta, 12 (1967) 1199.
    106. R. J. Gummow, A. de Kock, and M. M. Thackery, "Improved capacity retention in rechargeable 4V lithium lithium manganese oxide (spinel) cells", Solid State Ion. 69 (1994) 59.
    107. 方建雄,"射出成形機性能評估研究-田口式品質工程技術",機械工業 101 (1991) 181。
    108.李輝煌, "田口方法品質設計的原理與實務", 高立圖書有限公司, (2000).
    109. C. H. Liang, C. L. Nien, H. C. Hu, and C. S. Hwang, "Charging/discharging behavior of manganese oxide electrodes in aqueous electrolyte prepared by galvanostatic electrodeposition", J. Ceram. Soc. Jpn. 115 (2007) 319.
    110. R. Ishimatsu, F. Shigematsu, T. Hakuto, N. Nishi, and T. Kakiuchi, "Structure of the electrical double layer on the aqueous solution side of the polarized interface between water and a room-temperature ionic liquid, tetrahexylammonium bis(trifluoromethylsulfonyl)imide", Langmuir, 23 (2007) 925。
    111. Joseph H. Noggle, "Physical chemistry", second ed., Scott Foresman and Coppany, Glenview, Illinois, 1989.
    112. Y. Marcus, "Ion properties", Marcel Dekker, New York, 1997.
    113. B. E. Conway, "Ionic hydration in chemistry and biophysics", Elsevier, Amsterdam (1981) 3331.
    114. J. K. Chang and W. T. Tsai, "Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors", J. Electrochem. Soc., 150 (2003) A1333.
    115. C. C. Hu and T. W. Tsou, "The optimization of specific capacitance of amorphous manganese oxide for electrochemical supercapacitors using experimental strategies," J. Power Sources, 115 (2003) 179.
    116. M. Chigane, M. Ishikawa, "Manganese oxide thin film preparation by potentiostatic electrolyses and electrochromism", J. Electrochem. Soc., 147 (2000) 2246.
    117. M. Chigane, M. Ishikawa, M. Izaki, "Preparation of manganese oxide thin films by electrolysis/chemical deposition and electrochromism", J. Electrochem. Soc., 148 (2001) D96.
    118. M. C. Bernard, A. Hugot-Le Goff, Bich Vu Thi, and S. C. de Torres, "Electrochemical science and technology electrochromic reactions in manganese oxides", J. Electrochem. Soc., 140 (1993) 3065.
    119. K. W. Nam, K. B. Kim, "Manganese Oxide Film Electrodes Prepared by Electrostatic Spray Deposition for Electrochemical Capacitors", J. Electrochem. Soc. 153 (2006) A81.
    120. M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, National Association of Corrosion Engineerings, Houston, Texas, USA (1966).
    121. B. Messaoudi, S. Joiret, M. Keddam, H. Takenouti, "Anodic behaviour of manganese in alkaline medium", Electrochim. Acta 46 (2001) 2487.
    122. J. Jiang and A. Kucernak, "Electrochemical Supercapacitor Material Based on Manganese Oxide: Preparation and Characterization", Electrochim. Acta 47 (2002) 2381.
    123. Y. T. Wu and C. C. Hu, "Aspect Ratio Controlled Growth of MnOOH in Mixtures of Mn3O4 and MnOOH Single Crystal for Supercapacitors", Electrochem. Solid State Lett. 8 (2005) A240.
    124. C.C. Hu and T.W. Tsou, "The optimization of specific capacitance of amorphous manganese oxide for electrochemical supercapacitors using experimental strategies", J. Power Sources, 115 (2003) 179.
    125. B. Djurfors, J. N. Broughton, M. J. Brett, and D. G. Ivey, "Production of Capacitive Films from Mn Thin Films: Effects of Current Density and Film thickness", J. Power Sources 156 (2006) 741.
    126. H. Y. Lee and J. B. Goodenough, "Supercapacitor behavior with KCl electrolyte", J. Solid State Chem., 144 (1999) 220.
    127. J. B. Arnott, R. P. Williams, A. G. Pandolfo, and S. W. Donne, “Microporosity of heat-treated manganese dioxide”, J. Power sources 165 (2007) 581.
    128. R. Zengerle and J. Steigert, Microfluidics 1 Chapt. 7 Electrokinetics.

    下載圖示 校內:2009-07-16公開
    校外:2010-07-16公開
    QR CODE