簡易檢索 / 詳目顯示

研究生: 葉宗儒
Yeh, Chung-Ru
論文名稱: 具圓形凹槽結構的微流道系統 之流動特性探討及其在微混合器之應用
Experimental Characterization of Flow in a Microchannel with a Circular Cavity and Its Applications to Micromixers
指導教授: 魏憲鴻
Wei, H.-H.
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 76
中文關鍵詞: 微流體流動特性漩渦微混合器
外文關鍵詞: micromixer, characterization of flow, microchannel, vortex
相關次數: 點閱:72下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   對微流體系統而言,有效且快速地達到混合的目的是一相當重要的課題。本研究利用圓形凹槽流道結構來探討幾何形狀及流體流動條件對流動特性的影響,並利用這些結果進一步設計出理想的混合器。

      本實驗利用微型模造技術並以PDMS為材料來製作微流道系統。藉螢光粒子並利用顯微鏡觀察流體在微流道內的流動情形。由實驗結果得知,在改變流道幾何形狀的情況下,當凹槽開口角度越小,漩渦越容易形成,而流道管徑寬度越小,也越容易形成漩渦。在圓形凹槽開口角度越小跟流道管徑寬度越大的情況下,越容易形成低雷諾數漩渦。但是當開口角度大於210°,要形成漩渦就會比較困難。而改變流體流動條件,則可以造成漩渦位置偏移。適度地控制流量大小,可以使漩渦位置不斷地偏移,讓圓形凹槽內的流體產生擾動,造成較好的混合效果。

      最後,我們根據流道幾何形狀與流體操作條件的對應關係,設計兩组不同的混合器。測試的結果顯示,凹槽內的流動型態會隨流動條件明顯變化,預期對於混合效果的改善可能會有幫助。所以對於未來如何設計簡單而理想的微混合器,本研究結果可提供有效指引。

     Effective and rapid mixing is essential to microfluidic systems. In this work, a microchannel with a circular cavity is designed for assessing how flows are characterized by microchannel geometries and flow conditions.

     We utilize the PDMS-based microfabrication techniques to construct microchannels. Flow patterns are observed under a microscope with aid of fluorescent particles. The results reveal that the smaller the opening angle of the circular cavity and the width of the microchannel, the more susceptible vortex formation. As long as the opening angle is sufficiently small or the channel width is large enough, a low Reynolds-number vortex forms. On the other hand, as the opening angle is larger than 210°, it is difficult to form vortex. Changing the flow rate provides a control of the size and the location of a vortex.

     Finally, we design different types of micromixers based on the knowledge of flow characterization obtained above. We find that it might be more appealing to improve the performance of mixing by modulating flow structures through regulating the flow rate. This research can provide useful guidance for developing optimal strategies of designing micromixers.

    摘要 Ⅰ Abstract Ⅱ 致謝 Ⅲ 目錄 Ⅳ 表目錄 Ⅶ 圖目錄 Ⅷ 符號說明 ⅩⅢ 第一章 前言 1 1.1研究背景 1 1.2文獻回顧 3 1.2.1被動式混合器 3 1.2.2主動式混合器 4 1.3研究動機 5 第二章 實驗部分 8 2.1光罩設計 8 2.2光微影(Photolithography)製程 9 2.2.1晶片清洗 9 2.2.2塗佈光阻(Spin Coat) 9 2.2.3軟烤(Soft Bake) 10 2.2.4曝光(Exposure) 11 2.2.5曝後烤(Post Expose Bake) 12 2.2.6顯影(Development) 13 2.2.7硬烤(Hard Bake) 13 2.2.8 測量厚度 14 2.3微流道製作 14 2.3.1材料 14 2.3.2微流道模型製作 15 2.4微流道裝置組裝 16 2.4.1接合(Bonding) 16 2.4.2管件組裝 17 2.4.3 PDMS表面改質 17 2.5實驗設備與研究方法 18 2.5.1實驗設備 18 2.5.2研究方法 19 第三章 結果與討論 29 3.1凹槽開口角度(θ)的影響 30 3.2流道寬度(W)的影響 33 3.3歸納 38 3.3.1低雷諾數漩渦 38 3.3.2 θ的影響 39 3.3.3 W的影響 40 3.4微混合器設計 41 3.4.1微混合器 TypeA 42 3.4.2微混合器Type B 43 第四章 結論與建議 69 4.1結論 69 4.2建議 70 參考文獻 71 附錄A 74 附錄B 75 自述 76

    Bau, H. H., Zhong, J. H. and Yi, M. Q., 2001, A minute magneto hydro dynamic (MHD) mixer, Sensors and Actuators B-Chemical, 79, 207-215.
    Chen, H. and Meiners, J. C., 2004, Topologic mixing on a microfluidic chip, Appl. Phys. Lett., 84, 2193-2195.
    Duffy, D. C., McDonald, J. C., Schueller, O. J. A. and Whitesides, G. M., 1998, Rapid prototyping of microfluidic systems in poly(dimethylsiloxane), Anal. Chem., 70, 4974-4984.
    Fujii, T., Sando, Y., Higashino, K. A. and Fujii, Y., 2003, A plug and play microfluidic device, Lab on a Chip, 3, 193-197.
    Glasgow, I. and Aubry, N., 2003, Enhancement of microfluidic mixing using time pulsing, Lab on a Chip, 3, 114-120.
    He, B., Burke, B. J. A., Zhang, X., Zhang, R. and Regnier, F. E., 2001, A picoliter-volume mixer for microfluidic analytical systems., Anal. Chem., 73, 1942-1947.
    Higdon, J. J. L., 1985, Stokes flow in arbitrary two-dimensional domains: shear flow over ridges and cavities, J. Fluid. Mech., 159, 195-226.
    Ismagilov, R. F., Stroock, A. D., Kenis, P. J. A., Whitesides, G. and Stone, H. A., 2000, Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels, Appl. Phys. Lett., 76, 2376-2378.
    Jackman, R. J., Floyd, T. M., Ghodssi, R., Schmidt, M. A. and Jensen, K. F., 2001, Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy, J. Micromech. Microeng., 11, 263-269.
    Jacobson, S. C., McKnight, T. E. and Ramsey, J. M., 1999, Microfluidic devices for electrokinetically driven parallel and serial mixing, Anal. Chem., 71, 4455-4459.
    Johnson, T. J., Ross, D. and Locascio, L. E., 2002, Rapid microfluidic mixing, Anal. Chem., 74, 45-51.
    Kamholz, A. E., Weigl, B. H., Finlayson, B. A. and Yager, P., 1999, Quantitative analysis of molecular interaction in a microfluidic channel: The T-sensor, 71, 5340-5347.
    Kamholz, A. E. and Yager, P., 2002, Molecular diffusive scaling laws in pressure-driven microfluidic channels: deviation from one-dimensional Einstein approximations, Sensors and Actuators B-Chemical, 82, 117-121.
    Karl, A., Henry, F. S. and Tsuda, A., 2004, Low Reynolds number viscous flow in an alveolated duct, J. Biomech. Eng., 126(4), 420-429.
    Koch, M., Witt, H., Evans, A.G. R. and Brunnschweiler, A., 1999, Improved characterization technique for micromixers, J. Micromech. Microeng., 9,
    156-158.
    Liu, R. H., Stremler, M. A., Sharp, K. V., Olsen, M. 0. G., Santiago, J. G., Adrian, R. J., Aref, H. and Beebe, D. J., 2000, Passive mixing in a three-dimensional serpentine microchannel, J. Microelectromech. Syst., 9, 190-197.
    Liu, R. H., Yang, J. N., Pindera, M. Z., Athavale, M. and Grodzinski, P., 2002, Bubble-induced acoustic micromixing, Lab on a Chip, 2, 151-157.
    Lu, L. H., Ryu, K. S. and Liu, C., 2002, A magnetic microstirrer and array for microfluidic mixing, J. Microelectromech. Syst., 11, 462-469.
    Mengeaud, V., Josserand, J. and Girault, H. H., 2002, Mixing processes in a zigzag microchannel: Finite element simulations and optical study, Anal. Chem., 74, 4279-4286.
    Niu, X. Z. and Lee, Y. K., 2003, Efficient spatial-temporal chaotic mixing in microchannels, J. Micromech. Microeng., 13, 454-462.
    Okkels, F. and Tabeling, P., 2004, Spatiotemporal resonances in mixing of open viscous fluids, Phys. Rev. Lett., 92, 038301.
    Oddy, M. H., Santiago, J. G. and Mikkelsen, J. C., 2001, Electrokinetic instability micromixing, Anal. Chem., 73, 5822-5832.
    Rife, J. C., Bell, M. I., Horwitz, J. S., Kabler, M. N., Auyeung, R. C. Y. and Kim, W. J., 2000, Miniature valveless ultrasonic pumps and mixers.” Sensors and Actuators B-Chemical, 86, 135-140.
    Stroock, A. D., Dertinger, S. K. W., Ajdari, A., Mezic, I., Stone, H. A. and
    Whitesides, G. M., 2002, Chaotic mixer for microchannels, Science, 295, 647-651.
    Tang, Z. L., Hong, S. B., Djukic, D., Modi, V., West, A. C., Yardley, J. and
    Osgood, R. M., 2002, Electrokinetic flow control for composition modulation in a microchannel, J. Micromech. Microeng., 12, 870-877.
    Tippe, A. and Tsuda, A., 2000, Recirculating flow in an expanding alveolar model: Experimental evidence of flow-induced mixing of aerosols in the pulmonary acinus, J. Aerosol Sci., 31(8), 979-986.
    Yang, Z., Matsumoto, S., Goto, H., Matsumoto, M. and Maeda, R., 2001, Ultrasonic micromixer for microfluidic systems, Sensors and Actuators A-Physical, 92, 266-272.
    Yasuda, K., 2000, Non-destructive, non-contact handling method for biomaterials in micro-chamber by ultrasound, Sensors and Actuators B-Chemical, 64, 128-135.
    Veenstra, T. T., Lammerink, T. S. J., Elwenspoek, M. C. and van den Berg, A., 1999, Characterization method for a new diffusion mixer applicable in micro flow injection analysis systems, J. Micromech. Microeng., 9, 199-202.
    Yaralioglu, G. G., Wygant, I. O., Marentis, T. C. and Khuri-Yakub, B. T., 2004, Ultrasonic mixing in microfluidic channels using integrated transducers, Anal. Chem., 75, 1911-1917.

    下載圖示 校內:2008-07-04公開
    校外:2008-07-04公開
    QR CODE