簡易檢索 / 詳目顯示

研究生: 侯鈺虹
Hou, Yu-Hong
論文名稱: 以楓香果實製備生質炭應用於二氧化碳環加成反應
Biochars derived from the fruits of Liquidambar formosana Hance for cycloaddition of carbon dioxide to propylene oxide
指導教授: 劉守恒
Liu, Shou-Heng
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 93
中文關鍵詞: 楓香果實生物碳二氧化碳環加成反應碘摻雜
外文關鍵詞: Liquidambar formosana Hance, biochar, carbon dioxide, cycloaddition reaction, iodine-doping
相關次數: 點閱:107下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二氧化碳是一種溫室氣體,隨著人類經濟發展,大氣中二氧化碳濃度逐年增加,造成許多氣候異常現象,例如:溫室效應、海平面上升等。二氧化碳減量技術中,二氧化碳轉換技術被認為是具有潛力的方法,特別是透過環加成反應將二氧化碳轉換成高經濟價值的環狀碳酸酯。近年來,有許多觸媒已被製備用於環加成反應,但是這一系列的觸媒面臨許多問題,例如:長反應時間,高溫、高壓,有毒助溶劑,金屬浸出等,因此,開發具綠色化學條件的觸媒極為重要。本研究利用楓香果實以熱解法製備LfH-X (X= 600, 700, 800, 900, 1000℃)及以碘化鉀水溶液混合楓香果實粉後以熱解法製備YMI-L9 (Y= 4, 8, 12M)的生物碳,合成之生物碳透過SEM、XPS、XRD、FTIR、EA、STA、XRF及比表面積分析儀等進行特性分析,並且應用於二氧化碳環加成反應形成碳酸丙烯酯,再以GC-BID分析及計算其轉換率和選擇性,並計算出產率。結果顯示,於反應條件為環氧丙烷量43 mmole,觸媒量0.1600 g,四甲基碘化銨量0.86 mmole,溫度90°C,CO2壓力(3 kg/cm2)下,反應時間3小時,LfH-900有最好的環氧丙烷轉換率及碳酸丙烯酯的產率(皆為90%),歸因於LfH-900具有較高的催化性能(即比表面積和CO2吸收量),並且表面富有羥基和羧基可以活化環氧化物的C-O鍵幫助其開環。在摻雜碘生物碳方面,8MI-L9在上述相同的反應條件下,環氧丙烷的轉換率及碳酸丙烯酯產率分別為97%及87%,主要由於表面具有高氫鍵供給基團和三碘化物陰離子,其中三碘化物陰離子可以攻擊環氧化物被極化的C-O鍵以利開環。

    With the development of human activity, the CO2 concentration in the atmosphere increases year by year, resulting in a number of climate anomalies, for example: greenhouse effect and sea level rise, etc. Among the carbon dioxide reduction technologies, carbon dioxide conversion technology is considered to be a potential method, especially for converting carbon dioxide into high value of cyclic carbonates through cycloaddition reactions. Recently, plenty of catalysts have been prepared for cycloaddition reactions. However, the reported catalysts faced some problems, such as long reaction time, high temperature, high pressure, toxic co-solvent and metal leaching, etc. Therefore, it is important to develop the catalysts with green and environmental-friendly process. In this study, the fruits of Liquidambar formosana Hance were used to prepare the LfH-X (X= 600, 700, 800, 900, 1000℃) and idione-doped biochars (i.e., YMI-L9, Y= 4, 8, 12M) by a simple pyrolysis method. The synthesized biochars were analyzed by SEM, XPS, XRD, FTIR, EA, STA, XRF, N2 adsorption-desorption measurement, and CO2 adsorption measurement. The obtained LfH-X (X= 600, 700, 800, 900, 1000℃) and YMI-L9 (Y= 4, 8, 12M) were applied in the cycloaddition reaction to form propylene carbonate, and then analyzed by GC-BID and then calculated the conversion and selectivity. Among LfH-X catalysts, LfH-900 has the highest PO conversion and PC yield of 90% under the conditions of PO (43 mmole), catalyst (0.1600 g), TBAI (0.86 mmole), reaction temperature (90℃), pressure (3 kg/cm2) and reaction time (3 h). This is due to the fact that the LfH-900 exhibits specific surface area and CO2 absorption capacity, and abundant hydroxyl and carboxyl groups on the surface which can activate the C-O bond of the epoxide to facilitate the ring opening. In terms of YMI-L9, the 8MI-L9 has PO conversion and PC yield by were about 97% and 87%, respectively under the same reaction conditions mentioned above, which is possibly attributed to the presence of high hydrogen bond donor groups and triiodide anion that can attack the polarized carbon-oxygen bond of the epoxide to boost ring opening.

    摘要 I ABSTRACT II CONTENT IV LIST OF TABLES VII LIST OF FIGURES VIII CHAPTER 1 INTRODUCTION 1 1.1. Motivation 1 1.2. Objective 1 CHAPTER 2 LITERATURE REVIEW 2 2.1. Carbon dioxide 2 2.1.1. Carbon dioxide capture and storage (CCS) 5 2.1.2. Carbon dioxide utilization 9 2.2. Cyclic carbonate 11 2.3. Cycloaddition reaction 12 2.3.1. Reaction mechanism 15 2.4. Biomass 16 2.4.1. Liquidambar formosana Hance (LfH) ‎ 17 2.5. Biochar 19 2.5.1. Pyrolysis of biomass 21 2.5.2. Iodine-doped biochar 24 CHAPTER 3 EXPERIMENT METHODS 26 3.1. Chemicals 26 3.1.1. Chemicals 26 3.2. Experimental procedures 27 3.2.1. Pyrolysis of biomass 28 3.2.2. Iodine-doped biochar 29 3.2.3. Cycloaddition of CO2 to Propylene Oxide 30 3.3. Characterization and Analysis 31 3.3.1. Elemental analysis (EA) 32 3.3.2. X-Ray diffraction (XRD) 32 3.3.3. Thermogravimetric analysis (TGA) 33 3.3.4. Scanning electron microscopy (SEM) 33 3.3.5. Fourier transform infrared spectroscopy (FTIR) 33 3.3.6. X-ray photoelectron spectroscopy (XPS) 34 3.3.7. X-ray fluorescence spectrometer (XRF) 34 3.3.8. N2 adsorption-desorption measurement 34 3.3.9. CO2 adsorption measurement 35 3.3.10. Gas chromatography-barrier discharge ionization detector (GC-BID) 35 CHAPTER 4 RESULTS AND DISCUSSION 36 4.1. Characterization of Liquidambar formosana Hance 36 4.1.1. Proximate analysis 36 4.1.2. X-ray fluorescence spectrometer 36 4.1.3. Fourier transform infrared spectroscopy (FTIR) 37 4.1.4. Thermogravimetric analysis 38 4.2. Cycloaddition of carbon dioxide to epoxides catalyzed by LfH & LfH-X 40 4.2.1. Scanning electron microscopy (SEM) 40 4.2.2. N2 adsorption-desorption measurements 42 4.2.3. CO2 adsorption isotherm 44 4.2.4. Fourier transform infrared spectroscopy (FTIR) 45 4.2.5. X-ray diffraction (XRD) 46 4.2.6. Elemental analysis (EA) 47 4.2.7. Thermogravimetic analysis (TGA) 48 4.2.8. X-ray photoelectron spectroscopy (XPS) 50 4.2.9. Cycloaddition reaction by using LfH and LfH-X 54 4.2.10. Effect of temperature & pressure & time of cycloaddition reaction by LfH-900 57 4.3. Cycloaddition of carbon dioxide to epoxides catalyzed by YMI-L9 (Y=4, 8, 12M) 60 4.3.1. Scanning electron microscopy (SEM) 60 4.3.2. N2 adsorption-desorption measurements 62 4.3.3. CO2 adsorption isotherms 64 4.3.4. Fourier transform infrared spectroscopy (FTIR) 65 4.3.5. X-ray diffraction (XRD) 66 4.3.6. Elemental analysis (EA) 67 4.3.7. Thermogravimetric analysis (TGA) 68 4.3.8. X-ray photoelectron spectroscopy (XPS) 70 4.3.9. Effect of iodine concentration 77 4.3.10. Effect of temperature & pressure & time of cycloaddition reaction by 8MI-L9 79 4.3.11. Stability experiment of 8MI-L9 82 4.4. Cycloaddition reaction mechanism 83 CHAPTER 5 CONCLUSIONS 84 REFERENCES 86

    Acosta, R., Fierro, V., Martinez de Yuso, A., Nabarlatz, D., & Celzard, A. (2016). Tetracycline adsorption onto activated carbons produced by KOH activation of tyre pyrolysis char. Chemosphere, 149, 168-176.
    Al-Garni, T., Al-Jallal, N., & Aouissi, A. (2017). Synthesis of Propylene Carbonate from Epoxide and CO2 Catalyzed by Carbon Nanotubes Supported Fe1.5PMo12O40. Journal of Chemistry, 2017, 1-9.
    Anukam, A., Mamphweli, S., Meyer, E., & Okoh, O. (2014). Computer Simulation of the Mass and Energy Balance during Gasification of Sugarcane Bagasse. Journal of Energy, 2014, 1-9.
    Aquino, A. S., Bernard, F. L., Vieira, M. O., Borges, J. V., Rojas, M. F., Vecchia, F. D., Ligabue, R. A., Seferin, M., Menezes, S., & Einloft, S. (2014). A New Approach to CO2 Capture and Conversion Using Imidazolium Based-Ionic Liquids as Sorbent and Catalyst. Journal of the Brazilian Chemical Society, 25(12), 2551-2557.
    Babu, B. V., & Chaurasia, A. S. (2003). Modeling for pyrolysis of solid particle: kinetics and heat transfer effects. Energy Conversion and Management, 44(14), 2251-2275.
    Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68-94.
    Brownsort, P. A. (2009). Biomass Pyrolysis Processes:Review of scope,Control and Variability. Retrieved from Edinburgh: UK Biochar Research Center, 38.
    Burkart, M. D., Hazari, N., Tway, C. L., & Zeitler, E. L. (2019). Opportunities and Challenges for Catalysis in Carbon Dioxide Utilization. ACS Catalysis, 9(9), 7937-7956.
    Buttner, H., Longwitz, L., Steinbauer, J., Wulf, C., & Werner, T. (2017). Recent Developments in the Synthesis of Cyclic Carbonates from Epoxides and CO2. Topics in Current Chemistry, 375(3), 50.
    Calabrese, C., Giacalone, F., & Aprile, C. (2019). Hybrid Catalysts for CO2 Conversion into Cyclic Carbonates. Catalysts, 9(4), 325-354.
    Chang, H., Li, Q., Cui, X., Wang, H., Bu, Z., Qiao, C., & Lin, T. (2018). Conversion of carbon dioxide into cyclic carbonates using wool powder-KI as catalyst. Journal of CO2 Utilization, 24, 174-179.
    Chen, W., Meng, J., Han, X., Lan, Y., & Zhang, W. (2019). Past, present, and future of biochar. Biochar, 1(1), 75-87.
    Chen, W., Zhong, L.-x., Peng, X.-w., Sun, R.-c., & Lu, F.-c. (2014). Chemical Fixation of Carbon Dioxide Using a Green and Efficient Catalytic System Based on Sugarcane Bagasse—An Agricultural Waste. ACS Sustainable Chemistry & Engineering, 3(1), 147-152.
    Chun, Y., Sheng, G., Chiou, C. T., & Xing, B. (2004). Compositions and Sorptive Properties of Crop Residue-Derived Chars. Environmental Science & Technology, 38, 4649-4655.
    Comerford, J. W., Gray, T., Lie, Y., Macquarrie, D. J., North, M., & Pellis, A. (2019). Laminaria digitata and Palmaria palmata Seaweeds as Natural Source of Catalysts for the Cycloaddition of CO2 to Epoxides. Molecules, 24(2), 269-282.
    Demirbas, A. (2009). Pyrolysis Mechanisms of Biomass Materials. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 31(13), 1186-1193.
    Ding, Z., Xu, W., Zhang, X., Liu, Z., Shen, J., Liang, J., Jiang, M., & Ren, X. (2019). Controllable Acid/Base Propriety of Sulfate Modified Mixed Metal Oxide Derived from Hydrotalcite for Synthesis of Propylene Carbonate. Catalysts, 9(5), 470-484.
    Feng, Y., Liu, S., Liu, G., & Yao, J. (2017). Facile and fast removal of oil through porous carbon spheres derived from the fruit of Liquidambar formosana. Chemosphere, 170, 68-74.
    Han, J., Zhang, L., Zhao, B., Qin, L., Wang, Y., & Xing, F. (2019). The N-doped activated carbon derived from sugarcane bagasse for CO2 adsorption. Industrial Crops and Products, 128, 290-297.
    Hoang, V. C., Dinh, K. N., & Gomes, V. G. (2019). Iodine doped composite with biomass carbon dots and reduced graphene oxide: a versatile bifunctional electrode for energy storage and oxygen reduction reaction. Journal of Materials Chemistry A, 7(39), 22650-22662.
    Huang, X., Yu, F., Peng, Q., & Huang, Y. (2018). Superb adsorption capacity of biochar derived from leather shavings for Congo red. RSC Advances, 8(52), 29781-29788.
    Huang, Z., Li, F., Chen, B., & Yuan, G. (2016). Cycloaddition of CO2 and epoxide catalyzed by amino- and hydroxyl-rich graphitic carbon nitride. Catalysis Science & Technology, 6(9), 2942-2948.
    Jeon, I. Y., Choi, H. J., Choi, M., Seo, J. M., Jung, S. M., Kim, M. J., Zhang, S., Zhang, L., Xia, Z., Dai, L., Park, N., & Baek, J. B. (2013). Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Scientific Reports, 3, 1810.
    Kakaei, K., & Balavandi, A. (2016). Synthesis of halogen-doped reduced graphene oxide nanosheets as highly efficient metal-free electrocatalyst for oxygen reduction reaction. Journal of Colloid and Interface Science, 463, 46-54.
    Kamphuis, A. J., Picchioni, F., & Pescarmona, P. P. (2019). CO2-fixation into cyclic and polymeric carbonates: principles and applications. Green Chemistry, 21(3), 406-448.
    Khaligh, N. G., Mihankhah, T., & Johan, M. R. (2018). Efficient chemical fixation of CO2 into cyclic carbonates using poly(4-vinylpyridine) supported iodine as an eco-friendly and reusable heterogeneous catalyst. Heteroatom Chemistry, 29(4).
    Kołodyńska, D., Wnętrzak, R., Leahy, J. J., Hayes, M. H. B., Kwapiński, W., & Hubicki, Z. (2012). Kinetic and adsorptive characterization of biochar in metal ions removal. Chemical Engineering Journal, 197, 295-305.
    Kong, W., & Liu, J. (2019). Nitrogen-decorated, porous carbons derived from waste cow manure as efficient catalysts for the selective capture and conversion of CO2. RSC Advances, 9(9), 4925-4931.
    Landim Neves, M. I., Strieder, M. M., Vardanega, R., Silva, E. K., & Meireles, M. A. A. (2020). Biorefinery of turmeric (Curcuma longa L.) using non-thermal and clean emerging technologies: an update on the curcumin recovery step. RSC Advances, 10(1), 112-121.
    Leung, D. Y. C., Caramanna, G., & Maroto-Valer, M. M. (2014). An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 39, 426-443.
    Lewandowski, W. M., Radziemska, E., Ryms, M., & Ostrowski, P. (2011). Modern methods of thermochemical biomass conversion into gas, liquid and solid fuels. Ecologucal Chemistry and Engineering S-Chemia I Inzyzieria Ekologiczna S, 18(1), 39-47.
    Li, A., Liu, H.-L., Wang, H., Xu, H.-B., Jin, L.-F., Liu, J.-L., & Hu, J.-H. (2016). Effects of Temperature and Heating Rate on the Characteristics of Molded Bio-char. BioResources, 11(2), 3259-3274.
    Liang, S., Liu, H., Jiang, T., Song, J., Yang, G., & Han, B. (2011). Highly efficient synthesis of cyclic carbonates from CO2 and epoxides over cellulose/KI. Chemical Communications, 47(7), 2131-2133.
    Lin, Y.-F., Huang, K.-W., Ko, B.-T., & Lin, K.-Y. A. (2017). Bifunctional ZIF-78 heterogeneous catalyst with dual Lewis acidic and basic sites for carbon dioxide fixation via cyclic carbonate synthesis. Journal of CO2 Utilization, 22, 178-183.
    Lingbeck, J. M., O'Bryan, C. A., Martin, E. M., Adams, J. P., & Crandall, P. G. (2015). Sweetgum: An ancient source of beneficial compounds with modern benefits. Pharmacognosy reviews, 9(17), 1-11.
    Liu, M., Lu, X., Jiang, Y., Sun, J., & Arai, M. (2018). Zwitterionic Imidazole-Urea Derivative Framework Bridged Mesoporous Hybrid Silica: A Highly Efficient Heterogeneous Nanocatalyst for Carbon Dioxide Conversion. ChemCatChem, 10(8), 1860-1868.
    Liu, M., Wang, X., Jiang, Y., Sun, J., & Arai, M. (2018). Hydrogen bond activation strategy for cyclic carbonates synthesis from epoxides and CO2: current state-of-the art of catalyst development and reaction analysis. Catalysis Reviews, 61(2), 214-269.
    Liu, W.-J., Wen, Y.-Q., Wang, J.-W., Zhong, D.-C., Tan, J.-B., & Lu, T.-B. (2019). Nitrogen- and iodine-doped microporous carbon derived from a hydrogen-bonded organic framework: an efficient metal-free electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 7(16), 9587-9592.
    Liu, X., Chen, Y., Yao, Y., Bai, Q., & Wu, Z. (2018). Iodine-doped carbon fibers as an efficient metal-free catalyst to activate peroxymonosulfate for the removal of organic pollutants. Catalysis Science & Technology, 8(21), 5482-5489.
    Liu, X., Liao, J., Song, H., Yang, Y., Guan, C., & Zhang, Z. (2019). A Biochar-Based Route for Environmentally Friendly Controlled Release of Nitrogen: Urea-Loaded Biochar and Bentonite Composite. Scientific Reports, 9(1), 9548-9559.
    Liu, Z.-H., Qin, L., Pang, F., Jin, M.-J., Li, B.-Z., Kang, Y., Dale, B. E., & Yuan, Y.-J. (2013). Effects of biomass particle size on steam explosion pretreatment performance for improving the enzyme digestibility of corn stover. Industrial Crops and Products, 44, 176-184.
    Ma, H., Xu, Z., Wang, W., Gao, X., & Ma, H. (2019). Adsorption and regeneration of leaf-based biochar for p-nitrophenol adsorption from aqueous solution. RSC Advances, 9(67), 39282-39293.
    Ma, X., Wang, X., & Song, C. (2009). “Molecular Basket” Sorbents for Separation of CO2 and H2S from Various Gas Streams. Journal of the American Chemical Society, 131, 5777-5783.
    Markewitz, P., Kuckshinrichs, W., Leitner, W., Linssen, J., Zapp, P., Bongartz, R., Schreiber, A., & Müller, T. E. (2012). Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy & Environmental Science, 5(6), 7281-7305.
    McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresource Technology, 83, 37-46.
    Mujmule, R. B., Chung, W.-J., & Kim, H. (2020). Chemical fixation of carbon dioxide catalyzed via hydroxyl and carboxyl-rich glucose carbonaceous material as a heterogeneous catalyst. Chemical Engineering Journal, 395.
    Nautiyal, P., Subramanian, K. A., & Dastidar, M. G. (2014). Production and characterization of biodiesel from algae. Fuel Processing Technology, 120, 79-88.
    Oni, B. A., Oziegbe, O., & Olawole, O. O. (2019). Significance of biochar application to the environment and economy. Annals of Agricultural Sciences, 64(2), 222-236.
    Owusu, P. A., Asumadu-Sarkodie, S., & Dubey, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1).
    Pineda, M. G., Torres, S., Lopez, L. V., Enriquez-Medrano, F. J., de Leon, R. D., Fernandez, S., Saade, H., & Lopez, R. G. (2014). Chitosan-coated magnetic nanoparticles prepared in one-step by precipitation in a high-aqueous phase content reverse microemulsion. Molecules, 19(7), 9273-9287.
    Poh, H. L., Simek, P., Sofer, Z., & Pumera, M. (2013). Halogenation of graphene with chlorine, bromine, or iodine by exfoliation in a halogen atmosphere. Chemistry, 19(8), 2655-2662.
    Rafiq, M. K., Bachmann, R. T., Rafiq, M. T., Shang, Z., Joseph, S., & Long, R. (2016). Influence of Pyrolysis Temperature on Physico-Chemical Properties of Corn Stover (Zea mays L.) Biochar and Feasibility for Carbon Capture and Energy Balance. PLoS One, 11(6).
    Ramamurthy, N., & Kannan, S. (2007). Fourier transform infrared spectroscopic analysis of a plant (Calotropis gigantea Linn) from an industrial village, Cuddalore dt, Tamilnadu, India. Romanian Journal of Biophysics, 17(4), 269–276.
    Raza, A., Gholami, R., Rezaee, R., Rasouli, V., & Rabiei, M. (2019). Significant aspects of carbon capture and storage – A review. Petroleum, 5(4), 335-340.
    Rizwan, M., Ali, S., Qayyum, M. F., Ibrahim, M., Zia-ur-Rehman, M., Abbas, T., & Ok, Y. S. (2016). Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environmental Science and Pollution Research, 23(3), 2230-2248.
    Roy, P., & Dias, G. (2017). Prospects for pyrolysis technologies in the bioenergy sector: A review. Renewable and Sustainable Energy Reviews, 77, 59-69.
    Rui, B., Yang, M., Zhang, L., Jia, Y., Shi, Y., Histed, R., Liao, Y., Xie, J., Lei, F., & Fan, L. (2020). Reduced graphene oxide-modified biochar electrodes via electrophoretic deposition with high rate capability for supercapacitors. Journal of Applied Electrochemistry, 50(4), 407-420.
    Saeedi, A., & Rezaee, R. (2012). Effect of residual natural gas saturation on multiphase flow behaviour during CO2 geo-sequestration in depleted natural gas reservoirs. Journal of Petroleum Science and Engineering, 82-83, 17-26.
    Samikannu, A., Konwar, L. J., Mäki-Arvela, P., & Mikkola, J.-P. (2019). Renewable N-doped active carbons as efficient catalysts for direct synthesis of cyclic carbonates from epoxides and CO2. Applied Catalysis B: Environmental, 241, 41-51.
    Sawada, K., Arai, T., Nakamura, H., & Tsukagoshi, M. (2018). Higher plant triterpenoids bound in resistant macromolecules in extant and Pliocene fossil Liquidambar fruits. Res. Org. Researches in Organic Geochemistry, 34(2), 37-45.
    Scarlat, N. (2018). Water-Energy-Food-Ecosystem Nexus in Western Africa.
    Sharifzadeh, M., Sadeqzadeh, M., Guo, M., Borhani, T. N., Murthy Konda, N. V. S. N., Garcia, M. C., Wang, L., Hallett, J., & Shah, N. (2019). The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions. Progress in Energy and Combustion Science, 71, 1-80.
    Shen, Y., Ma, D., & Ge, X. (2017). CO2-looping in biomass pyrolysis or gasification. Sustainable Energy & Fuels, 1(8), 1700-1729.
    Siddique, A. B., Pramanick, A. K., Chatterjee, S., & Ray, M. (2018). Amorphous Carbon Dots and their Remarkable Ability to Detect 2,4,6-Trinitrophenol. Sci Rep, 8(1), 9770.
    Spessato, L., Bedin, K. C., Cazetta, A. L., Souza, I., Duarte, V. A., Crespo, L. H. S., Silva, M. C., Pontes, R. M., & Almeida, V. C. (2019). KOH-super activated carbon from biomass waste: Insights into the paracetamol adsorption mechanism and thermal regeneration cycles. Journal of Hazardous Materials, 371, 499-505.
    Su, Y.-C., & Ho, C.-L. (2017). Composition, in vitro Cytotoxicity, Anti-mildew and Anti-wood-decay Fungal Activities of the Fruit Essential Oil of Liquidambar formosana from Taiwan. Natural Product Communications, 12, 287-290.
    Sun, J., Wang, J., Cheng, W., Zhang, J., Li, X., Zhang, S., & She, Y. (2012). Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2. Green Chemistry, 14(3), 654-660.
    Szeląg-Sikora, A., Kędzierska-Matysek, M., Matwijczuk, A., Florek, M., Barłowska, J., Wolanciuk, A., Matwijczuk, A., Chruściel, E., Walkowiak, R., Karcz, D., & Gładyszewska, B. (2018). Application of FTIR spectroscopy for analysis of the quality of honey. BIO Web of Conferences, 10, 02008-02015.
    Tao, D.-J., Mao, F.-F., Luo, J.-J., Zhou, Y., Li, Z.-M., & Zhang, L. (2020). Mesoporous N-doped carbon derived from tea waste for high-performance CO2 capture and conversion. Materials Today Communications, 22, 100849-100857.
    Terzi, E. (2017). Thermal behavior of Liquidambar orientalis mill wood before and after extraction processes. İstanbul Üniversitesi Orman Fakültesi Dergisi, 67(2), 150-156.
    Thomas, P., Lai, C. W., & Bin Johan, M. R. (2019). Recent developments in biomass-derived carbon as a potential sustainable material for super-capacitor-based energy storage and environmental applications. Journal of Analytical and Applied Pyrolysis, 140, 54-85.
    Thommes, M. (2010). Physical Adsorption Characterization of Nanoporous Materials. Chemie Ingenieur Technik, 82(7), 1059-1073.
    Trivedi, M. K., Dahryn Trivedi, A. B., & Khemraj Bairwa, H. S. (2015). Fourier Transform Infrared and Ultraviolet-Visible Spectroscopic Characterization of Biofield Treated Salicylic Acid and Sparfloxacin. Natural Products Chemistry & Research, 03(05).
    Vidal, J. L., Andrea, V. P., MacQuarrie, S. L., & Kerton, F. M. (2019). Oxidized Biochar as a Simple, Renewable Catalyst for the Production of Cyclic Carbonates from Carbon Dioxide and Epoxides. ChemCatChem, 11(16), 4089-4095.
    Wan, Z., Sun, Y., Tsang, D. C. W., Yu, I. K. M., Fan, J., Clark, J. H., Zhou, Y., Cao, X., Gao, B., & Ok, Y. S. (2019). A sustainable biochar catalyst synergized with copper heteroatoms and CO2 for singlet oxygenation and electron transfer routes. Green Chemistry, 21(17), 4800-4814.
    Wang, J., & Wang, S. (2019). Preparation, modification and environmental application of biochar: A review. Journal of Cleaner Production, 227, 1002-1022.
    Wu, K.-H., Wang, D.-W., Zeng, Q., Li, Y., & Gentle, I. R. (2014). Solution phase synthesis of halogenated graphene and the electrocatalytic activity for oxygen reduction reaction. Chinese Journal of Catalysis, 35(6), 884-890.
    Wu, Z., Xie, H., Yu, X., & Liu, E. (2013). Lignin-Based Green Catalyst for the Chemical Fixation of Carbon Dioxide with Epoxides To Form Cyclic Carbonates under Solvent-Free Conditions. ChemCatChem, 5(6), 1328-1333.
    Xia, D., Li, H., Chen, Z., Huang, P., Fu, D., Li, Q., & Wang, Y. (2019). Mesoporous Activated Biochar for As(III) Adsorption: A New Utilization Approach for Biogas Residue. Industrial & Engineering Chemistry Research, 58(38), 17859-17870.
    Xiao, B., Sun, J., Wang, J., Liu, C., & Cheng, W. (2013). Triethanolamine/KI: A Multifunctional Catalyst for CO2 Activation and Conversion with Epoxides into Cyclic Carbonates. Synthetic Communications, 43(22), 2985-2997.
    Yaman, S. (2004). Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, 45(5), 651-671.
    Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12-13), 1781-1788.
    Yao, Z., Nie, H., Yang, Z., Zhou, X., Liu, Z., & Huang, S. (2012). Catalyst-free synthesis of iodine-doped graphene via a facile thermal annealing process and its use for electrocatalytic oxygen reduction in an alkaline medium. Chemical Communications, 48(7), 1027-1029.
    Yi, C., Qi, S., Zhang, D., & Yang, M. (2010). Covalent conjugation of multi-walled carbon nanotubes with proteins. Methods Mol Biol, 625, 9-17.
    Yu, K. L., Lau, B. F., Show, P. L., Ong, H. C., Ling, T. C., Chen, W. H., Ng, E. P., & Chang, J. S. (2017). Recent developments on algal biochar production and characterization. Bioresource Technology, 246, 2-11.
    Zaman, C. Z., Pal, K., Yehye, W. A., Sagadevan, S., Shah, S. T., Adebisi, G. A., Marliana, E., Rafique, R. F., & Johan, R. B. (2017). Pyrolysis: A Sustainable Way to Generate Energy from Waste. Pyrolysis, 3-36.
    Zevenhoven, R., Eloneva, S., & Teir, S. (2006). Chemical fixation of CO2 in carbonates: Routes to valuable products and long-term storage. Catalysis Today, 115(1-4), 73-79.
    Zhang, J., Huang, B., Chen, L., Du, J., Li, W., & Luo, Z. (2018). Pyrolysis Kinetics of Hulless Barley Straw Using the Distributed Activation Energy Model (Daem) by the Tg/Dta Technique and Sem/Xrd Characterizations for Hulless Barley Straw Derived Biochar. Brazilian Journal of Chemical Engineering, 35(3), 1039-1050.
    Zhang, W.-H., He, P.-P., Wu, S., Xu, J., Li, Y., Zhang, G., & Wei, X.-Y. (2016). Graphene oxide grafted hydroxyl-functionalized ionic liquid: A highly efficient catalyst for cycloaddition of CO2 with epoxides. Applied Catalysis A: General, 509, 111-117.
    Zhang, X., Zhang, C., Lin, Q., Cheng, B., Liu, X., Peng, F., & Ren, J. (2019). Preparation of Lignocellulose-Based Activated Carbon Paper as a Manganese Dioxide Carrier for Adsorption and in-situ Catalytic Degradation of Formaldehyde. Frontiers in Chemistry, 7, 808-819.
    Zhao, P., Ye, X., Zhu, Y., Jiang, H., Pan, J., Wan, Z., Jia, C., & Yang, C. (2019). Iodine-steam functionalized reduced graphene oxide/oxidized carbon yarn electrodes for knittable fibriform supercapacitor. Journal of Power Sources, 442, 227188-227196.
    Zhao, S. X., Ta, N., & Wang, X. D. (2017). Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material. Energies, 10(9), 1293-1308.

    下載圖示 校內:2025-07-06公開
    校外:2025-07-06公開
    QR CODE